Novelty Detection Using Local Context Analysis

Ronald T. Fernández David E. Losada ronald.teijeira@rai.usc.es dlosada@usc.es Departamento de Electrónica y Computación Universidad de Santiago de Compostela,SPAIN

Novelty Detection:

Go beyond the traditional relevance-oriented ranking of documents.

Filter redundant material → increase user satisfaction.

Interesting subject in many areas: text summarization, web information access, question answering, etc.

TREC Novelty Tracks:

Find relevant and novel sentences in a ranked set of documents (constructed from a query).

Current methods to detect novelty (e.g. NewWords [1]) are based on word counts and overlapping measures with the previously seen sentences.

Problem: terms unrelated to the query can trigger novelty.

Motivation:

Aim: Determine the utility of Local Context Analysis (LCA) for retrieval of relevant and novel sentences.

LCA: A common term from the top-ranked relevant documents will tend to co-occur with query terms within the top ranked documents.

Effective method to estimate the importance of terms (e.g. for QE).

Focus the novelty detection on a vocabulary related to the query.

Is LCA useful to drive novelty detection?

Experiments

TREC 2002, 2003 and 2004 novelty tracks' data.

Baselines: NewWords and SetDif [1].

Select the top 25-retrieved sentences to build the vocabulary (Tq).

Experiments with varying size of the vocabulary Tq.

Results:

TREC 2003: many relevant sentences → no improvements (at least, in terms of P@5).

TREC 2002, 2004: harder collections -> LCA more useful.

Taking a large number of terms in the top 25 sentences is the

best choice. Larger vocabulary --- better precision.

LCA looks promising to enhance the retrieval of a few novel sentences.

	NewWords	NewWords LCA				
		10 terms	$50\ terms$	$100\ terms$	all terms	
T2002	0.200	0.204	0.229	0.245	0.237	
T2003	0.596	0.532	0.552	0.572	0.596	
T2004	0.224	0.248	0.288	0.284	0.256	

[SetDif	SetDif LCA				
		10 terms	50 terms	100 terms	all terms	
T2002	0.208	0.216	0.220	0.241	0.233	
T2003	0.568	0.564	0.540	0.564	0.584	
T2004	0.236	0.256	0.296	0.308	0.264	

P@5 results for TREC 2002, 2003 and 2004

References:

- [1] J. Allan, C. Wade, A. Bolivar, Retrieval and novelty detection at the sentence level. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 324–321, 2003
- [2] D. Harman. Overview of the TREC 2002 Novelty Track. In Proceedings of the 11th Text REtrieval Conference, 2002
- [3] I. Soboroff. Overview of the TREC 2004 Novelty Track. In Proceedings of the 13th
- [4] I. Soboroff, D. Harman. Overview of the TREC 2003 Novelty Track. In Proceedings of the 12th Text REtrieval Conference, 2009.
- [5] J. Xu, W. B. Croft. Improving the effectiveness of information retrieval with local context analysis. ACM Transactions on Information Systems, 18(1):79-112, 2000
- [6] L. Zhao, M Zhang, S. Ma. The nature of novelty detection. Information Retrieval, 9(5): 521-541, 2006

