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Abstract Employing effective methods of sentence retrieval is egsseior many tasks in
Information Retrieval, such as summarization, noveltyedgbn and question answering.
The best performing sentence retrieval techniques attemgerform matching directly be-
tween the sentences and the query. However, in this papgspsitthat the local context
of a sentence can provide crucial additional evidence tinéurimprove sentence retrieval.
Using a Language Modeling Framework, we propose a novetirefiation of the sentence
retrieval problem that extends previous approaches stht@dbcal context is seamlessly in-
corporated within the retrieval models. In a series of cahpnsive experiments, we show
that localized smoothing and the prior importance of a sem@ean improve retrieval ef-
fectiveness. The proposed models significantly and sutisligroutperform the state of the
art and other competitive sentence retrieval baselinesaallroriented measures, while re-
maining competitive on precision-oriented measures. fldssarch demonstrates that local
context plays an important role in estimating the relevasfca sentence, and that existing
sentence retrieval language models can be extended tzedtiis evidence effectively.
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1 Introduction

The sentence retrieval (SR) task consists of finding retesantences from a document
base given a query. This task is very useful in a wide rangafofination Retrieval (IR)
applications, such as summarization, question answam@jppinion mining. SR is a chal-
lenging problem area that has attracted a great deal oftiatterecently [1,29,18,16,13].
The bulk of SR methods proposed in the literature are a $irédgward adaptation of stan-
dard retrieval models (such tf-idf, BM25, Language Modets), where the sentence is the
unit of retrieval, as opposed to the document. This leadsten®dels which estimate rel-
evance based only on the match between query and sentemse Tdre state of the art SR
method is known as term frequency - inverse sentence freguéisf) which is analogous
to the traditional tf-idf method used in document retrigitall 3]. While, numerous attempts
to develop more sophisticated models that employ techejgsiech as Natural Language
Processing and Clustering have been proposed [11, 8, 238],héwve failed to significantly
and consistently outperform the tfisf method. Consequgittlg progress has been made in
terms of improving sentence retrieval effectiveness.

To develop a more effective sentence retrieval method, weeathat the assumption
engaged as a result of the naive application of documergvalri.e. that all sentences are
independent, does not hold. This is because a sentencerégisded by other sentences
which help to contextualize it. Also the sentence is part dbaument, and this sentence
may or may not be important in representing the topic of threudeent. Presently, thiscal
contexts either ignored or underutilized by existing methods. \&sifthat by incorporating
the local context within SR models, more effective SR mesheah be developed.

The reasons for this are as follows: Any model using only ddiach term statistics to
match query and sentences will suffer severely from thelwdeay mismatch problem be-
cause there is little overlap between the query and sentemoes. Intuitively, the local
context could be used to improve retrieval, by helping tagate the difficulties posed by
the vocabulary mismatch rooted in the sparsity of senteradditionally, current methods
do not exploit the importance of a sentence in a documentiwive posit is an important
factor in determining the relevance of a sentence. A relesamtence needs to be indicative
of the query topic, but also representative and importattiércontext of the document, i.e.
we assume that key statements within a document are mohg tikbe relevant.

To this aim, we propose a novel reformulation of the SR proltieat includes the local
context in a Language Modeling (LM) framework. Within thisneipled framework, it is
possible to naturally include additional evidence into #meoothing process in order to
enrich the representation of sentences. Also, the modeide® a way to include a query-
independent probability that encodes the importance ohtesee in a document. In a set
of experiments performed over several TREC test collestiove compare the proposed
models against existing SR models and demonstrate thaj legial context within a LM
framework delivers retrieval performance that signifibaoutperforms the current state of
the art in sentence retrieval.

The remainder of this paper is organized as follows. Se@ipnesents previous work
related to this research. Section 3 explains the methodsepege to address the SR prob-
lem. Section 4 reports on the conducted experiments angizasaihe outcomes. The paper
concludes with Section 5, where a summary of our findings amdttibns for future work
are presented.



2 Related Work

In this paper, we adopt the same definition of the sentencievel problem as proposed
in the TREC Novelty Tracks [5,28,27]. Although these traeks mostly focused on re-
searching redundancy filtering, they also involve a SR taakeénables research into how to
retrieve sentences that are relevant to a given query.

As previously mentioned, there have been numerous SR nwthat have been pro-
posed in the literature. One of the first methods was coingtisig§l]. It is an adaptation
of the document retrieval method tf-idf, but at the sentdegel. This simple approach is
regarded as the state of the art in SR as it has been showndistemtly outperform other
methods [1,16,4]. As a matter of fact, this parameter-fre¢hod has been shown to per-
form at least as well as the best performing empirically tbaed trained SR models based
on BM25 or LMs [16,4]. While this tends not to be the case inwdoent retrieval, on other
tasks where the unit of retrieval is smaller such as passtgeval, vector-space models
have performed empirically well. For instance, Kaszkial Zobel [9, 10] showed that some
cosine and pivoted models are highly effective for documanking based on passages. Al-
though we evaluate here SR (rather than document retrigas]j studies on passage-based
document retrieval confirm also that vector-space metheoelsilao state of the art models
for query-passage scoring.

In [11], Li and Croft analyzed the components of sentencesdemtified patterns (such
as phrases, name entities and combination of query ternestimate the relevance of the
sentences. Although this method succeeded in detectingdedt information, it was not
able to improve the tfisf baseline to estimate relevancest€ting methods have been also
considered as alternative techniques to improve SR maieth,methods have shown mixed
performance [8,33] seldom improving upon the tfisf baselifteese cluster methods also
incur additional computation costs and increased comyleraking them unattractive to
implement. Query expansion techniques have been also ggdp improve the perfor-
mance of current sentence retrieval approaches. Among, tttemmost common is query
expansion via pseudo-relevance feedback [3,13] and wigctsee feedback [7,16], or rel-
evance models [12]. While query expansion techniques terichprove performance by
addressing the vocabulary mismatch problem, they rely adgmerformance during the
first pass of retrieval to realize such improvements.

In this paper, we reformulate the problem of sentence ketriwithin the LM frame-
work, where localized smoothing is employed to improve #gresentation of sentences.
The work most related to this research has been performedsgda and Fernandez [16]
and Murdock [18]. In [16], the local context of a sentence wdisrmally introduced into
the computation of sentence similarity. Basically, exteight was given to those terms that
have high frequency in the associated documents. In [18]e#timation of the sentence
language model included some local context, and combireswidence from the sentence
and document level. More specifically, a simple mixture ni@dehe sentence, document
and collection was proposed in order to form a better reptatien of the sentence. From
the limited experiments reported, Murdock showed that theéure model was better than
other LM methods with the TREC novelty data. However, theltssare far from conclusive
because competitive SR methods, such as tfisf, were notaggdluNor was any indication
of the sensitivity of the method w.r.t the smoothing pararseteported. In this paper, we
provide a more general framework that encompasses botlopssformulations using Lan-
guage Models, but also provides avenues for incorporatimgrdorms of local context.



3 Sentence Retrieval Models

The SR task consists of estimating the relevance of eachrssg#in a given document set,
and supplying the user with a ranked list of sentences thefgais/her need (expressed
as a user querg). In this section, we first outline the standard LM approagplied to the
problem of SR. Then, we propose a novel reformulation whictudes local context seam-
lessly and intuitively within the model. Finally, we condkithe section with a description
of baseline SR models (tfisf and BM25).

3.1 Sentence Retrieval with Language Models (Standard ddi¢th

Language Models are probabilistic mechanisms to explargéneration of text [19]. The
simplest LM is the unigram LM, which consists of associatingrobability to each word
of the vocabulary [31,6,17]. This is a very intuitive and @oful approach that has been
shown to be very effective in many IR tasks, such as ad-hoeievet [31], distributed IR
[24], and expert finding [2].

Given the SR problem, the idea is to estimate relevance dicgpto the probability of
generating a sentensgiven the query, expressed as(s|q). Instead of directly estimating
this probability, Bayes Theorem is applied, and sentenaasbe ranked using the query-
likelihood approachp(q|s)®. The probability of a query given the sentence can then
be estimated using the standard LM approach, where for eatbres, a sentence LM
is inferred. From the sentence mod&lit is assumed that each query tetnis sampled
independently and identically, such that:

p(al6s) = t|_| p(t|6s) 1)
€q

where,c(t,q) is the number of times the tertmappears irg. The sentence model is con-
structed through a mixture between the probability of a terthe sentence and the proba-
bility of a term occurring in some background collectior (imaximum likelihood estima-
tors of sentence and collection, respectively). This isaligyperformed in one of two ways
by using (a) Jelinek-Mercer (JM) smoothing as shown in Equ&k, or (b) Dirichlet (DIR)
smoothing as shown in Equation 3.

P(t[6s) = (1—A)p(t]s) +Ap(t) )

pljey) — 2 ERD @

wherec(t,s) is the number times thatappears irs, andc(s) is the number of terms in
the sentencel and u are parameters that control the amount of smoothing. Neate ith
Equations 2 and 3, the smoothing expression ignores anydongext and resorts immedi-
ately to the most general background knowlegge. This is a strong assumption because
it focuses the computation on sentence and collectiorsstatj without regard to any ref-
erence to other terms and phrases in sentences within the dacnment. As previously
mentioned, many SR models [1] take similar simplificatioasle query-sentence similar-
ity values do not take into account any information from tbewment (i.e. all sentences are
treated independently).

1 This assumes that there is not a priori preference for peatitypes of sentences, ig(s) is uniform.



JM and DIR smoothing yield to retrieval matching functionghaspecific length re-
trieval trends. In [14] and [26], the authors studied theseds. In [14], Losada and Az-
zopardi reported that DIR smoothing performs better tharsdothing by showing that
the document length pattern resembles the relevance matteey showed that DIR pri-
ors balance the query modeling and the document modelieg,ralhereas JM smoothing
does not consider the document length in the smoothing psodéus, JM leads to poor
retrieval performance because documents tend to be lohgethe documents retrieved by
DIR and the smoothing cannot compensate this. In [26], Sewakd Allan demostrated
that DIR smoothings performance advantage arises from glicibtdocument prior that fa-
vors longer documents by smoothing them less. They testegdtiormance of a DIR prior
and the JM smoothing with and without the document prior drmv&d that both methods
smooth documents identically, except that the DIR prior atin® longer documents less.
The result of this meant that the DIR prior tends to favor #teeval of longer documents.
Given the sentence retrieval problem, it is an open questsoto what kind of length cor-
rection is appropriate for this task and whether the impléngth correction of smoothing
methods employed help or hinder in the retrieval of relegamtences.

3.2 Sentence Retrieval using Language Models with Locat&n

In this section, we relax the independence assumption leetwentences and assume that
the document (i.e. the local context) plays an importarg imoldetermining the relevance of
a sentence. Therefore, we treat the SR problem as a problestiwfating the probability of
the query and the document given the sentence, i.e. is thensenlikely to be a generator
of both the query and the document? This assumes that thareaselation between this
likelihood, p(g,d|s) (whered is the document that contairs} and the relevance of the
sentence. Thus, we posit that relevance is affected by hdixthveesentence explains both
the document and the query topic (as opposed to the queryatgie). In order to simplify
the estimation of the conditional joint probability, we aamrite it as follows:

p(g,d[s) = p(dls,d)p(d]s) 4

wherep(q|s,d) is the probability of the query given the sentence and doctnaedp(d|s)

is the probability of the document given the sentence. Nowcwae clearly see that the
estimation of the query likelihood will depend on both thatsace and the document. In
addition, thep(d|s) provides another way in which the local context is captulbgdencoding
the importance of a sentence within the document. In the subdections we consider how
these probabilities can be estimated.

3.3 Estimatingp(d|s)

The probability of generating the document given the sexggp(d|s), can be regarded as a
measure of the importance of the sentence within the topiceoflocument. Formally, this
expression can be rewritten using Bayes’ rule:

plels) = P

wherep(s|d) is the probability of a sentence given a document,gf® the probability of a
sentence, ang(d) is the prior probability of a document. Here, we assume tiatetis no
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a priori preference towards any of the documents, and phtas a constaft The p(s|d)
represents how likely the sentence is to be generated frentddloument, whereag(s)
represents how likely the sentence is to be generated rdpddhe ratio between the two
expresses the importance of the sentence. Hence, in oréstitoatep(d|s), we compute
p(s) as:

p(s) = ﬂ p(t)<ts (6)

wherep(t) can be calculated using the maximum likelihood estimatehefterm in a large
collection: p(t|C) (whereC is the collection). Analogously, we define the probabilifyao
sentence given a documend as:

p(sld) = ﬂ p(t|d)cs) @)

wherep(t|d) is the probability of generatingfrom the maximum likelihood estimator of the
document, and(t, s) usually equals one as most terms only appear once in a serfteriess
the term is a stop word). It is to be noted that the problem ¢&iong null probabilities
from these estimates does not exist because terms that iocaigentence will have non-
zero probability in the LM of the document. Observe tipédl|s) will give preference to
those sentences that are central to the document’s topicsh{gh p(s|d)) but also rare
within the collection (i.e. lowp(s)). In this paper we carefully study the effect pfd|s)
on performance, and have designed a complete set of expasivwhere we compare the
estimation described above against the simplest (and)reseeimptionp(d|s) is uniform.

3.4 Estimatingp(q|s,d)

In order to estimate the query likelihood given the sentemzkthe document, we do this in
a similar manner to the standard approach: first we assurhéhtra is a modefs 4 which
generates the query terms, such that the probability ofyggisen the sentence and the
document is:

p(qls.d) = [] p(t|6sa)*"V 8)
teq

The LM p(t|Bsq) is determined by the sentence and the local context dengtegtbus
we can represent the model as a mixture between the prdpaidia term in the sentence
and the probability of a term in a document, which is then sitmed by the background
model. The idea is that the terms in the document provide mgda the sentence, and can
improve the estimate of the relevance of a sentence.

For the time being, we assume that|d) is the normalized term frequency bfn d,
but later we explore restricting this estimate to the sergssurrounding the senteree

There are several ways in which a mixture model can be defisied smoothing:

2 A simple alternative, which could be explored as part of fetwork, would be to estimate the prior
based on the estimated relevance of the document.



Three Mixture Model (3MM)The first model we propose here is a mixture of three LMs.
This model assumes that queries are generated from a mofttimese different probability
distributions: a LM for the sentence(t|s), a LM for the documentp(t|d), and a LM for
the collection,p(t|C) (or, simply, p(t)). Formally, we define this approach as:

p(t|Bsq) = A p(t]s) +yp(t|d) + (1 —A —y)p(t) 9)

whereA andy are smoothing parameters such that € [0,1]. This estimator was initially
proposed by Murdock in [18]. Other authors have also apf@is for other tasks such as
guestion-answering [30]. Since the 3MM is very general worth considering alternatives
which smooth the sentence with the document and the calfebtit in a length-dependent
way. This can be achieved by either first smoothing with theudwent proportionally to
the sentence, and then interpolating with the collectioa. the Two Stage Model). Or,
alternatively, first interpolating the sentence and theudwent, and then smoothing with the
collection proportional to the sentence length. We shdlitithese methods next.

Two-Stage Model (2S)

The two-stage model adopted here is a variant of the wellvkniwvo-stage model used
for document retrieval [32]. This model is a combination dfi€hlet (DIR) and Jelinek-
Mercer (JM) smoothing. Rather than smoothing with the otiten model in both stages,
we adapt here the model to the characteristics of the SR takklzerefore, the DIR stage
usesp(t|d) while the JM stage usext) for smoothing purposes. This is a simple and natural
application of the two-stage smoothing for our problem. Tidrenal expression is:

c(t,s) + pp(t|d)

p(t|es,d) = (lfA) C(S) +u

+Ap(t) (10)

Two-Stage Model, Stages Inverted (2SWlje propose here a two-stage model where the
order in which DIR and JM smoothing methods are applied isrited:

p(t|6sg) = (1-B) (1= A)p(tls) +Ap(tld) ) +Bp(t) (12)

where 8 = c<s)L+u The sentence model is first smoothed using linear intetipalavith

the document’s model. Next, Dirichlet is applied to smootthvhe collection modél By
smoothing in this way the first stage provides a new estimhtheoforeground terms by
combining the sentence and the document (through linearpiolation), and then the next
stage adjusts the estimates with the background languadel mmportional to the length of
the sentence. By inverting the smoothing methods, diffdiegth normalization schemes
are applied to the sentence language models. In later sectice shall analytically and
empirically show how the 2S and 2S-1 models differ in thigoess.

Observe that DIR and JM smoothing can also be included wittigframework assum-
ing thatp(qg|s,d) = p(q|s) and applying DIR or JM to estimate the likelihood.dfd|s) is
uniform, then these models are equivalent to the ones disdus section 3.1. However, if
p(d|s) is not uniform then we get a novel combination of these papn#oothing strategies
with the estimation of the importance of sentences in docusadable 1 summarizes the
different proposed models and informs about what configamatare novel (and, therefore,
have not been tested in the literature).

3 As shown in [31], Dirichlet smoothing can be rewritten in melar interpolation fashion with a proper
document-dependent parameter.



Likelihood Smoothing Without With
p(dls)  p(dls)
p(q|6s) M [12,13,16] untested
p(q|6s) DIR [12,13,16] untested
p(d|Bsa) 3MM [18] untested
P(0|6sq) 2S untested  untested
P(q|6sq) 2S-I untested  untested

Table 1 Language Models included in our study. Most of the configorat are novel and have not been
tested in the literature.

3.5 Baseline Sentence Retrieval Models

For completeness, we also include the score functions foulpo SR models, tfisf [1] and

BM25 [22], which we shall employ as baselines. tfisf was a€ldph the literature as the
state-of-the-art sentence retrieval method [1]. In [16]deemonstrated that it performs sim-
ilar to tuned BM25. BM25 is a simple adaption of the popular Z8Mormula used in docu-

ment retrieval to the SR case, such that:

N-—sf(t)+05 (kp+1)c(t,s) (ks+1)c(t,q)

Si s,q) = lo
Mem2s(S, 0) B 9 sf(t)+0.5 kl((l_b)+b;(Tss)l> +c(t,s) ks +c(t,q)

12)
whereN is the number of sentences in the collectisfit) is the number of sentences that
containt, avslis the average sentence length &pdb andks are parameters.

On the other hand, we also used tfisf, which is a state of th8Ruthaseline. This mea-
sure is an adaptation of tf-idf at sentence level:

) N+1
Simyist(S, Q) = log(c(t 1)log(c(t,s) +1)log | ———— 13

mis(sq) = 3 loallta) + Dlog(et o + Dlog (gt ) 43
Unlike the BM25 method, this method is parameter-free. éiggmance for sentence re-
trieval has been shown to be comparable to the best perfeemaintained by BM25 [16,
13].

Besides these models, we also experimented with variatfisfcind BM25 that support

the combination of sentence and contextual statisticssd taariants are discussed in Section
4.2.

4 Empirical Study

This section presents the experimental methodology eredléy thoroughly evaluate the
performance of the proposed models against existing aie st¢éhe art models. Particular
attention is paid to examining the differences in perforagainrought about by the inclusion
of the local context. Specifically, we hypothesize that:

1. localized smoothing will improve the estimate of the sene models, resulting in im-
proved effectiveness, and



2. the centrality of a sentence in a document helps to inferétevance of a sentence, i.e.
sentences that briefly summarize a document tend to be meramé than the rest of
sentences in the document.

4.1 Experimental Setup

As previously mentioned, we adopt the SR task as defined inREC novelty tracks: given
a textual query that represents an information need, a daséeof documents is supplied
and systems have to process this ranking to extract therssstehat are estimated as rel-
evant to the information need. Along with this definition wsed all three TREC Novelty
Track collections 2002, 2003 and 2004 [5,28,27]. Each ctiie provides the same sen-
tence retrieval task, but under different conditions. INETIR2002, the track contains 50
topics, extracted from earlier ad hoc tracks. TREC 2003 aREQ 2004 contain also 50
topics each but these were built specifically by assessorthifotask. Because in TREC
2002 and TREC 2003 the aim was to find relevant sentencesevargl documents, all the
documents of the ranked list of documents in TREC 2002 andd RED3 are relevant. In
contrast, in TREC 2004 the ranked set of documents contatisrelevant and non-relevant
documents. In TREC 2002, on average, only tl#9%2 of sentences were judged as rele-
vant, while in TREC 2003 and TREC 2004 the number of sentejucieed as relevant is
higher (3907% and 127%, respectively). All of these collections include coetplrel-
evance judgments (i.e. human assessors judged every ceiritetine retrieved documents
as relevant or non-relevant). By using all three test ctblecit is possible to assess the
robustness of the sentence retrieval methods and thoroegaluate their performance.

The baseline methods and the LM models were implemented tisinLemur toolkit.
For the experiments, each collection was indexed wherelaterstop words were removed
but stemming was not applied. The corresponding set of$dpiceach collection was used,
where short queries were constructed taking the title fietltl@ TREC Topic. Observe that
we use short queries while the teams participating in the@ R&velty tracks were allowed
to use the whole topic. This means that the results preséstedare not directly comparable
to the official TREC results.

For all of our experiments, we report the performance of eaethod using three stan-
dard measures: precision at ten sentences (P@10), meageaymecision (MAP) and R-
Prec. Observe that the models proposed are recall-origmtexture, so we would expect to
witness gains in terms of MAP, and to some extent R-Prec. i§liscause the new models
are able to promote sentences that do not necessarily matof query terms, but their
context matches with some of the query terms. This shouldrezéhthe recall of relevant
sentences (in particular sentences which may not overltptiaeé query terms). The useful-
ness of recall in sentence retrieval can be illustratedysia application scenario presented
in the TREC novelty track [5]: where a user is examining thekeal list of documents,
and is interested in reviewing all the on-topic sentenceésMants to skip through the non-
relevant sentences. In this case, navigation could be made efficient so that they can
transverse through all the relevant sentences in all thardents. Whereas in the context
of multi-document summarization, having access to all tlevant sentences is also very
important. However, the precision oriented measures, Pg@d@ some extent R-Prec, also
are important for tasks likes query-biased summarizatoippet generation, and question-

4 www.lemurproject.org
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answering. ldeally, the proposed models will be able to ro@doth precision and recall
based measures, but are likely to gain the largest improvesneterms of recall.

To compare the differences in performance between thereliffemethods, statistical
significance tests were applied using the t-test with a 958fidence level.

During the course of our experiments, each method presémi8dction 3 was evalu-
ated. Since many of the methods required parameter tunie@nsured a fair comparison
by employing a train-test methodology. Training of eachhrodt(except tfisf, which is pa-
rameter free) was performed on one of the three TREC noveltgséts. For BM25 we
considered the following range of valudg=1.0-2.0 (steps of 0.1p=0.0-1.0 (steps of 0.1)
andks was fixed to O (the effect d&; is negligible with short queries). For the LM methods,
A was set to 0.1-0.9 (steps of 0.1), the range of values (fbr 2S and 2S-I) wag1, 5,
10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 130&ad the range of values for(for the
3MM model) was 0.1-0.9 (steps of 0.1). The parameter settimgwing best performance
were then fixed. These were then used to conduct the remadfidiee evaluation, which
was performed on the two remaining datasets. We experimientit the three possible
training/testing configurations (training with TREC 200&aesting with TREC 2003 and
TREC 2004; training with TREC 2003 and training with TREC 2@hd TREC 2004; and
training with TREC 2004 and training with TREC 2002 and TREI2) and found the
same trends. In the next sections we report and discussdtksrachieved by training with
TREC 2002 and testing with TREC 2003 and TREC 2004. Howevelinalude the results
for the other training/testing configurations in appendixofurther demonstrate that our
methods are robust.

Three models may be needed in order to estimate the releshacEntence: a sentence
model, a local context model (where all the sentences in tloeirdent or the surround-
ing sentences where considered, depending on the type efitbething applied) and the
background model (which is generated from all the documierttse collection).

When evaluating the LM approaches, we considered diffeiéetnatives. On one hand,
we study the impact of(d|s) to specifically study the effect that this extra and novel €om
ponent has on SR effectiveness. On the other hand, we coeditlgo different contexts:
the document (as it was shown in Section 3) and the surrogrsdintences (see the below
subsection).

4.1.1 Smoothing with Surrounding Sentences

In the previous sections we studied smoothing methodsrtbatdedp(t|d) within the sen-
tence model, wherp(t|d) was estimated using the maximum likelihood estimate ofra ter
in a document. This implies that all terms in the documentelated to the sentence. Here,
we propose an alternative estimatepsf|d) which relaxes this assumption, and assumes
that only the sentences surrounding the sentence beingdseace related. So given a sen-
tences, the sentences immediately preceding and follovérge directly related to it and,
therefore, they constitute a closer context to the sententethis way, considering the
surrounding sentences only, a more accurate representdtibe sentence LM should be
obtained, which we anticipate will also lead to improvedfpenance.

In this case, given a sentenggts contexics is composed by the previous sentesge,
the current sentenaand the next sentence in the documggl®. Smoothing is performed

5 The t-test was shown to produce lower error rates than sigiéttoxon [23].
6 |f sis the first or the last sentence in the document, ey Or Shext are ignored, respectively.
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by usingp(t|cs) instead ofp(t|d) in Equations 9, 10 and 11, whepét|cs) is the normalized
count oft that occurs irsprey, S andspext

In the next subsection we show the results of this approadilcampare them against
the results obtained when smoothing with documents ingiéadrrounding sentences.

4.2 Experimental Results

The first set of experiments tested the effect of localizedathingwithout p(d|s) (i.e. sen-
tence importance is not considered, all sentences aredawadias equally important). Then,
we perform a second set of experiments that examines thectropaentence importance.
Finally, we present additional experiments to determinetiver or not the baseline models
can also be enhanced by including local context.

Influence of localized smoothing Table 2 reports the parameter setting that optimized
performancé. Given the TREC 2002 as the training collection, Table 3 shtive perfor-
mance in the test collections of the methods against thdibaeseén terms of P@10, MAP
and R-Prec. The table shows the performance of models tleatittser the document as
context, or the surrounding sentences. The best perfoniarmresented in bold. Statisti-
cally significant differences between a given result anéldfis marked with an asterisk, and
statistically significant differences w.r.t. standard BdiRoothing are marked with a T (DIR
provides the LM baseline, which is referred to as LMB). Thst teesults obtained when
TREC 2003 and TREC 2004 were used as the training collect®mlao provided in the
Appendix A.

P@10 MAP R-Prec
BM25 k1=1.2,b=0, k3=0 k1=l.4, b=0, k3=0 k1=1.0, b=0, k3=0

p(als,d) p(als.cs) p(als,d) p(als.cs) p(als,d) p(als.cs)

3MM A=0.1,y=0.9 A=0.7,y=0.2 A=0.8,y=0.1 A=0.8,y=0.1 A=0.1,y=0.9 A=0.1,y=0.4
2S  A=0.9,u=250 A=0.1,p=500 A=0.8,u=5000A=0.1,u=1 A=0.9,u=10000A=0.1, u=50
2S-1  A=0.9,u=10000A=0.8,u=500 A=0.9, u=5000 A=0.6, u=500 A=0.7, u=1000 A=0.9,u=5000
DIR u=100 u=500 u=250

M A=0.1 A=0.1 A=0.9

Table 2 Optimal parameter settings in the training collection (TIRE002) for BM25 and LMs without
p(ds).

In Table 3, where the language models have been trained Uisteg- 2002, the first
prominent result is that the 2S-1 smoothing method is thé peorming method in terms
of MAP and R-Prec. And this novel method is significantly eethan the tfisf and DIR
baselines, when either surrounding sentences or the eotitenent is used in the estimate.
This is a good result, as it provides a simple and intuitivéhoe that outperforms the long
standing benchmark held on these standard test colleclitiesresults in Tables 11 and 13
also show similar improvements.

Interms of P@10, though, the performance of most of the ety smoothed models
is slightly poorer than the baselines. The 2SI method doegige the best performance
at P@10 on the TREC 2004 collection, when using the surrognsiéntences to smooth

7 The best parameter settings when smoothing with the sufingrsentencess) are similar.
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p(4qls) p(qls,d) p(4qls;cs)
Context n/a Document Surrounding Sents.
tfisf BM25 DIR JM SMM 28 28-T |3MM 28 28-T
(LMB)
TREC 2003
P@10 7480  .7540f .6960 .5600 [ .5020 .5680 7080 [.5200 4480 7320
A%(tfisf) (+0.8) (-7.0) (-25.1) | (-32.9) (-24.1) (-5.3) (-30.5) (-40.1) (-2.1)
A%(LMB) (+7.5) (+8.3) (-19.5) | (-27.9) (-18.4) (+1.7) |(-25.3) (-35.6) (+5.2)
MAP 38511t .38521 |.3638 .3474 | .3513 .3502 .4099* | .3532 .3494 .3893t1
A%(tfisf) (+0.0) (-5.5) (-9.8) | (-8.8) (-9.1) (+6.4) |(-8.3) (-9.3) (+1.1)
A%(LMB) (+5.9) (+5.9) (-4.5) | (-3.4) (-3.7) (+12.7) | (-2.9) (-4.0) (+7.0)
R-Prec 45811  .45801 | .4457 4406 | .4419 4459  .4765* | .4373 4374 .4588
A%(tfisf) (-0.0) (-2.7) (-3.8) | (-3.5) (-2.7) (+4.0) | (-4.5) (-4.5) (+0.2)
A%(LMB) (+2.8) (+2.8) (-1.1) | (-0.9) (+0.0) (+6.9) | (-1.9) (-1.9) (+2.9)
TREC 2004
P@10 .4300 4380 .4200 .3580 [.2940 .3540 14300 [.3420 2720 .4700%
A%(tfisf) (+1.9) (-2.3) (-16.7) | (-31.6)  (-17.7) (+0.0) | (-20.5) (-36.7) (+9.3)
A%(LMB)  (+2.4) (+4.3) (-14.8) | (-30.0)  (-15.7) (+2.4) |(-18.6) (-35.2) (+11.9)
MAP 2358t .2368*t | .2240 2131 | .2195 .2203  .2550* | .2226 2204 .2488*t
A%(tfisf) (+0.4) (-5.0) (-9.6) | (-6.9) (-6.6) (+8.1) |(-5.6) (-6.5) (+5.5)
A%(LMB) (+5.3) (+5.7) (-4.9) | (-2.0) (-1.7) (+13.8) | (-0.6) (-1.6) (+11.2)
R-Prec 3298t .33001 | .3146 .3010 | .3060 .3088 .3581* | .3084 3111 34181
A%(tfisf) (+0.1) (-4.6) (-8.7) |(-7.2) (-6.4) (+8.6) | (-6.5) (-5.7) (+3.6)
A%(LMB) (+4.8) (+4.9) (-4.3) | (-2.7) (-1.8) (+13.8) | (-2.0) (-1.1) (+8.6)

Table 3 P@10, MAP and R-Prec in the test collections (TREC 2003 & TRB@4). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. LMB arerked with .

the language models. However, though this is not alwaysfiigntly different from the
baselines.

As previously mentioned, this is perhaps to be expectedusecthe proposed methods
are more likely to improve recall. Still, it is very encounag to see that early precision
can also be increased if the smoothing parameters are ajgedpset. Recall that we have
trained the parameters on a held out test collection, soaHermance reported here is not
necessarily the best that could be obtained using improgeahpeter estimation methods.
For the remaining of this paper, the focus of the discussidhbe on performance with
respect to the recall oriented measures, MAP and R-Preessiotherwise specified.

In terms of the type of smoothing, i.e. using surroundingeseces or documents, there
was no significant differences between the performanceir@atavith the different esti-
mates. Though, using the complete document was slighttereterall. The other notable
point is that the 3MM and 2S localized smoothing methods didpnovide improvements
to performance. This suggests that the 2S-I smoothing rdgihavides an advantage over
these other smoothing methods, which may not necessarfigdmuse of the local informa-
tion used. We explore the reasons in the next subsection.

Impact of Sentence Importance In this set of experiments we considered the influence
of the local context stemming from the importance of a sergevithin a document. Table 4
reports the best settings in the training collections fer proposed LM methods with the
sentence importance component. The performance of eatiodistshown in Table 5 while
Figures 1, 2 and 3 provide a bar graph of the P@10, MAP and Rd?reach method with
and withoutp(d|s). Itis clear from these results that the inclusion of theseeg importance
results in significantly better retrieval performance fthitle LMs over the state of the art
method (tfisf). It appears that the impact of the sentenceitapce dominates the localized
smoothing. For instance, given the query “Chinese earttejughe 3MM with sentence
importance is able to retrieve the following relevant seogewithin the top-10 sentences:
“Chinese architects from the Ministry of Construction anelbidi Province and the city of
Zhangjiakou have begun work on rebuilding earthquake-dgahgarts of Hebei and have
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completed design work on ten types of residential housimgiioe villages as models”.
Nevertheless, this sentence does not appear in the topti® eérsion of 3MM that does not
include sentence importance. This is because this sensememarizes well the document

and, therefore, thp(d|s) factor promotes it.
There are not significantly different levels of effectiveadetween each of the different

smoothing methods. Observe also that the performance bf28et substantially affected

by the sentence importance factor.

P@10

MAP

R-Prec

BM25

k1=1.2,b=0, k3=0

k1=1.4,b=0, k3=0

k1=1.0,b=0, k3=0

p(alsd)p(dls) p(ascs)p(ds) p(als,d)p(d]s) p(als,cs)p(d]s)

p(alsd)p(dls) p(als.cs)p(ds)

3MM A=0.3,y=0.3 A=0.1,y=0.1 A=0.5,y=0.1 A=0.6,y=0.3 A=0.3,y=0.2 A=0.1,y=0.2
2S A=0.1,u=1 A=0.2,u=1000 A=0.1,pu=1 A=0.1,u=5 A=0.4,u=10 A=0.8,u=1
2S-1 A=0.1,u=1 A=0.2,u=250 A=0.1,p=10 A=0.4,u=1 A=0.1,u=100 A=0.1,u=10
DIR u=250 u=1 u=25
M A=0.9 A=0.1 A=0.5

Table 4 Optimal parameter settings in the training collection (T.RED02) for LMs withp(d|s).

p(als)p(d]s)

p(qls,d)p(d|s)

p(4qls,cs)p(dls)

Context Sentence Only [ Document [ Surrounding Sents.
tfisf BM25 | DIR JM  [3MM 25 25-1 |3MM 28 2S5-1
TREC 2003
P@io0 .7480T .7540F [.7280 7320 [.7220 7440 7360 [.7260 7340 .7280
AY%(tfisf) (+0.8) |(-2.7) (-2.1) (-3.5) (-0.5) (-1.6) |(-2.9) (-1.9) (-2.7)
A%(LMB) (+7.5) (+8.3) (+4.6) (+5.2) [(+3.7) (+6.9) (+5.7) |(+4.3) (+5.5) (+4.6)
MAP 38511 .3852t |.4144* .4137*t |.4104*t .4117*t .4108*t|.4129*t .4132*t .4132*t
A%(tfisf) (+0.0) [(+7.6) (+7.4) |[(+6.6) (+6.9) (+6.7) [(+7.2) (+7.3) (+7.3)
A%(LMB) (+5.9) (+5.9) (+13.9) (+13.7) |(+12.8) (+13.2) (+12.9) |(+13.5) (+13.6) (+13.6)
R-Prec 45811 .45801 |.4802*F .4800*1 |.4802*F .4800*t .4789*t |.4796*t .4789*t .4798*t
AY%(tfisf) (-0.0) (+4.8) (+4.8) [(+4.8) (+4.8) (+4.5) | (+4.7) (+4.5) (+4.7)
A%(LMB) (+2.8) (+2.8) |(+7.7) (*7.7) |(+7.7) (+7.7) (+7.4) |(+7.6) (+7.4) (+7.7)
TREC 2004
P@10 4300 4380 [.4380 .4420 4400 4420 .4380 .4400 .4380 .4380
AY%(tfisf) (+1.9) (+1.9) (+2.8) [(+2.3) (+2.8) (+1.9) |(+2.3) (+1.9) (+1.9)
A%(LMB) (+2.4) (+4.3) |(+4.3) (#5.2) |(+4.8) (+5.2) (+4.3) |(+4.8) (+4.3) (+4.3)
MAP .23581 .2368*t |.2549*t .2548*t |.2527*t .2538*t .2529*t|.2550*t .2550*t .2553*
A%(tfisf) (+0.4) (+8.1) (+8.1) [(+7.2) (+7.6) (+7.3) |(+8.1) (+8.1) (+8.3)
A%(LMB) (+5.3) (+5.7) (+13.8) (+13.8) |(+12.8) (+13.3) (+12.9) |(+13.8) (+13.8) (+14.0)
R-Prec .32981 .33001 |.3522*t .3520*t |.3504*f .3513*f .3508*t|.3510*f .3520*t .3523*
A%(tfisf) (+0.1) |((+6.8) (+6.7) |[(+6.3) (+6.5) (+6.4) [(+6.4) (+6.7) (+6.8)
A%(LMB) (+4.8) (+4.9) |(+12.0) (+11.9) |(+11.4) (+11.7) (+11.5) |(+11.6) (+11.9) (+12.0)

Table 5 P@10, MAP and R-Prec in the test collections (TREC 2003 & TRB@4). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. startiBdR (LMB) are marked with .

All the models that includg(d|s) are novel, as previous proposals using LMs are solely
based on query likelihood estimations. Note also that treethixture model as proposed in
[18] (i.e. withoutp(d|s)) performs worse than the strong and weak baselines (reshdten
in the 8" column of Table 3).

Incorporating context into the baselines:The baseline models (tfisf and BM25) are
context-unaware w.r.t. the local context. Given the finding have obtained from incorpo-
rating local context in the LM framework, it is natural to wdsr whether introducing the
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Fig. 1 P@10 in the test collections (TREC 2003 & TREC 2004) of the Lwvith and without sentence
importance.

local context into the baselines can also improve theirgperénce. First, we present several
straight forward adaptions of BM25 and tfisf to include locahtext, then we compare these
variations under the same experimental conditions as above

A natural solution to introduce document statistics into ZV[25] is to use the ex-
tended version of this model to handle multiple weighteddfiei.e. BM25f [21]. BM25f
estimates the relevance of documents considering a dod¢wsenset of components. Each
of these components may be assigned a specific weight witeiddcument. For our case,
a sentences] can be considered as an aggregate of the sentence itsetfendntext con-
taining the sentence (i.e. the document or the surroundintesces provide local context to
the sentence). Given these two components, the BM25f maddde instantiated as follows:

i N—-sf(t)+05  weightt,s ks +1)c(t,
simemzst) (S,0) = log ® . ghtt,s) (ks +)c(t,q)

- . 14
1&5hs sf(t)+0.5 ki +weightt,s) ks+c(t,q) (14)
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Fig. 2 MAP in the test collections (TREC 2003 & TREC 2004) of the LM#&hvand without sentence
importance.

c(t,s)-a c(t,contexy - (1—a)

c(contex)

weight(t.s) =
ghit.s) (1—bser) +bser (1 —beontext) + b (
avs| contex context™ avel

wherebsent andbeontext @re Normalizing constants associated to the field lengghaimd its
context, respectivelyy is a boost factor that controls the term frequency mixturtevben
context statistics and sentence statisti¢spntex} (c(s)) is the number of terms in context
(9), c(t,contex) is eitherc(t,d) or c(t,cs) (depending on whether we apply document-level
or surrounding sentences context), @awtl (avsl) is the average context (sentence) length
in the collection. To reduce the number of parameters to bedib.oniexiWas fixed to 075
(the value usually recommended for document length nomawédin in BM25 [20]),k; was
set to the optimal value found with BM25 (Table 2) dadvas set again to 0. The remaining
parametersqy andbsen, Were tuned in the training collection (ranging from 0 to kfaps of
0.1).
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Fig. 3 R-Prec in the test collections (TREC 2003 & TREC 2004) of tiMslLwith and without sentence
importance.

Regarding tfisf, no extensions have been defined to handi¢doatext and, therefore,
we defined ad-hoc adjustments to mix context statistics sétiitence statistics. We tested
the following variants of tfisf:

a) tfmix: c(t,s) is replaced by c(t,s) + (1 — a)c(t,contexd;

b) idfdoc:sf(t) is replaced byl f(t) (i.e. idf is computed at the document level rather than
at sentence level);

c) tfmix+idfdoc: where both a) and b) were applied.

At training time, onlya needs to be tuned (between 0 and 1 in stepsBDf @gain, TREC
2002 was the training collection and TREC 2003 and TREC 208w whe test collections.
The optimal performance was reached viath,= 0 anda = 1 (BM25f), anda = 1 (tfisf).
This means that these models obtain best performance, weelodal context is largely
ignored! Tables 6 and 7 report the results achieved in thetdgctions. Not surprisingly,
the variations perform virtually the same as the originatiels. As a matter of fact, BM25f
with a =1 (considering either the surrounding sentences or themdectas a local context)
yields the same SR strategy as BM25. The same happens fetftfist (a = 1) with respect
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BM25 BM25f
BM25f(d) BM25f(cs)
bsen=0,0 =1 bgen=0,a=1
TREC 2003
P@10 7540 7540 .7540
A% (+0.0) (+0.0)
MAP .3852 .3852 .3852
A% (+0.0) (+0.0)
R-Prec  .4580 .4580 .4580
A% (+0.0) (+0.0)
TREC 2004
P@10 .4380 .4380 .4380
A% (+0.0) (+0.0)
MAP .2368 .2368 .2368
A% (+0.0) (+0.0)
R-Prec  .3300 .3300 .3300
A% (+0.0) (+0.0)

Table 6 Performance of the BM25 and its variations (BM25f) to ineumbntext in the test collections (TREC
2003 & TREC 2004).

tfisf idfdoc tfmix tfmix+idfdoc
tfmix(d)  tfmix(cs)  tfmix+idfdoc(d)  tfmix+idfdoc(cs)
a=1 a=0.6 a=1 a=0.6
TREC 2003
P@10 7480  .7540 7480 .7380 . 7540 7480
A% (+0.8) (+0.0) (-1.3) (+0.8) (+0.0)
MAP .3851  .3906* .3851 .3843 .3906 .3843
A% (+1.4) (+0.0) (-0.2) (+1.4) (-0.2)
R-Prec  .4581 4613 .4581 .4565 4613 .4592
A% (+0.7) (+0.0) (-0.3) (+0.7) (+0.2)
TREC 2004
P@10 14300  .4360 .4300 4240 .4360 .4360
A% (+1.4) (+0.0) (-1.4) (+1.4) (+1.4)
MAP .2358  .2363 .2358 .2359 .2363 .2375
A% (+0.2) (+0.0) (+0.0) (+0.2) (+0.7)
R-Prec .3298  .3288 .3298 .3308 .3288 .3270
A% (-0.3) (+0.0) (+0.3) (-0.3) (-0.8)

Table 7 Performance of tfisf its variations to include context in thst collections (TREC 2003 & TREC
2004).

to tfisf when the document is considered as the local cordextertheless, tfisf+tfmix con-
sidering the surrounding sentences=£ 0.6) performs worse than tfisf in TREC 2003 and
the same as tfisf in TREC 2004. With idfdoc there are sometslatiations in performance
with respect to the baseline but they are insignifitant

While it appears that local context can be useful the modaltiich it is incorporated
determines how successfully this evidence can be usece lrethiguage Modeling approach,
the framework provides a natural and intuitive manner tadecand incorporate the local
context through the smoothing process. However, it is amdiew to effectively incorporate
the evidence within these other models. We leave this diredor future work, and study
more precisely why and how the Language Models are able itatiap on this additional
evidence.

8 We also tried other values af on the test collections - and can confirm that whes 1 anda = 0.6 the
best performance was obtained when the document or theusidliry sentences are considered, respectively.
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4.3 Analysis

In this section, we conduct a detailed analysis to undedspaacisely the reasons behind
the differences in effectiveness of the LMs designed. Tdaéxghe improvements in per-
formance brought about by the 2S-1 model when no sentencertanee is used, we derived
the retrieval formulas associated to these LMs (similahtd performed in [31,15]). The
retrieval formulas in sum-log form are shown in Table 8. Exang the models in this way
we can see the differences between each smoothing metli@thtiresting to pay attention
to the second addend in these formulas. This componentpoies usually some form
of length correction. In the DIR and 2S method, this compompemalizes long sentences
and acts as a length normalization component (which is usefidocument retrievaf)
[14]. In the JM and 3MM methods, this component is independerthe length of the
sentence. However, in the 2S-I method, this compopeninotes long sentencegcause
a highc(s) means thap is low making that, overall, the sum is greater (becauseallysu

p(t|d) >> p(t)).

Model Retrieval formula
c(t,s) u
(1-2) cty9 '
JM te;qc(t,q) log (1+ 3 c(s)-p(t)) +c(q) -logA
Ap(t]s) +yp(t/d) + (1—A —y)p(t)

(
VD N O T (1 e vy

+tz c(t,g)log(yp(t|d) + (1—A —y)p(t))
€q

(1M LR + AR

25 te;qc(t’q) 10 (1—A) 52+ A p(t)
pp(t|d)
+t;4C(t7q) loQ((l_)\)C(S)TIJ +Ap(t))
(1-B)((1—A)p(t|s) +Ap(tld)) + Bp(t)
DIRCLAC (T B)Ap(d) + Bp(D)

251 + clt,q)log((1— B)A p(t|d) + Bp(t))

teq
(B=mn/(c(s)+u))

Table 8 Sum-log retrieval formulas for the SR models based on LM#hut p(d|s)).

9 Note that since older retrieval models such as tf and tf28] Lising a vector space model overly favored
longer documents, a length correction was required, whectalized longer documents. However, in sentence
retrieval it would appear this is not appropriate.
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Fig. 4 Effect of non-matching component (length correction) irRDRS and 2S-| against sentence length.
The plots show that the score assigned to sentences aréeadpueportionally to the length of the sentence.
Note that the 2S-I method favors longer sentences, whilettier methods penalize longer sentences.

To illustrate this point further, the Figure 4 shows the h@traof the length correction
that the DIR, 2S and 2S-1 methods produce with respect toghsce length. Such correc-
tion is given by the second addend of expressions in TabletBid example, a querywith
three termsda, s, 0c) is used, where(da,q) = ¢(gs,d) = ¢(qc,q) = 1, p(ga) = 1075,
p(gs) = 10°*2, p(qc) = 1073, p(dald) = p(gs|d) = p(ac|d) = 1072, A = 0.5, u = 100.
Then the sentence lengths was varied from 1 to 50 (in stepy dfate that in DIR and 2S
the correction factor decreases with sentence lengthewhS-I the value of this factor in-
creases with sentence length. This illustrates graplittait DIR and 2S methods are likely
to promote short sentences, while the 2S-I method is likefyromote long sentences.

This seems to indicate that promoting long sentences is aavaghieve better perfor-
mance, as opposed to using more information. Observe asdhih best parameter setting
in BM25 fixesb to 0 (Table 2), meaning that sentences are not penalizedibecd their
length. To further support this claim, we analyzed the ayedangth of sentences in these
collections and compared it to the average length of retes@mtences. The average sentence
length is around 9 terms in all collections, while the averbngth of relevant sentences is
around 14 terms. Furthermore, we analyzed the top 100 ssgeatrieved by every model
and found that 2S-I yields an average length of 13.71 and61@REC 2003 & TREC
2004, respectively), while the other models retrieve shi@entences on average (e.g. 3MM
retrieves sentences whose average length is 12.68 and i@speéctively). These statistics
suggest that 2S-1 is superior to the other models becausertgies longer sentences, and
this is required to achieve better performance for the tdskewotence retrieval.

Further to this analysis, it is interesting to note that ie éstimation ofp(d|s) longer
sentences will also attract a higher probability. As a maifdéact, in Table 9 and Figure 5
we compare the performance of DIR and JM methods and a variahem consisting of
incorporating a sentence length prior. We show that thisaméwoutperforms significantly
their corresponding original versions. However, it doesauiperform the 2S-1 model and,
therefore, the sentence length is not the only componentrtakes the 2S-1 model effective.

Observe thap(d|s), as estimated in section 3.3, is a factor that favors longesees
(because, for the vast majority of the terms in a sentepitéd) >> p(t)19). This explains
why 2S-I does not receive any significant benefits frpfd|s) (as 2S-1 already retrieves
many long sentences) while the other LM techniques recegmfieant increases. As a
matter of fact, analyzing the top 100 sentences retrieveevlyy method withp(d|s), we
found that the average lengths are quite uniform across is¢deound 20 terms). This
analysis suggests that the local context used indirectynptes longer sentences, which
results in improved retrieval effectiveness.

10 Recall thatp(-|d) andp(-) are both maximum likelihood estimators.
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p(als) p(als)p(s)
DIR JM DIR+len JM+len
TREC 2003
P@10 6960 5600 .7500F  .6120%
(u=100) @M=01) (U=250) @A =08)
MAP .3638 3474 3998* 3730*
(u=500) @=01) (=500 (=03)
R-Prec 4457 4406 4663* 4588*
(u=250) (=09 (=500 (=03)
TREC 2004
P@10 14200 .3580 .4960* .3740
(u=100) @M =01) (U=250) @A =08)
MAP .2240 2131 2517* 2298*
(u=500) @=01) (=500 (=023)
R-Prec .3146 .3010 3476* 3287*

(M=250) @A =09) (U=50) (=03)

Table 9 Comparative between DIR and JM against their variants wighsentence length prior (trained with
TREC 2002 and tested with TREC 2003 and TREC 2004).

Summary and DiscussionTo sum up, the importance of sentences within documents,
p(d|s), makes that the performance of the LMs improve significalbpdyond existing state
of the art. When ignoring(d|s), 2S-1 is the only approach that handles well the retrieval of
long sentences with document-level smoothing.

It is quite remarkable that any LM method with(d|s) is superior to the baselines.
This suggests that retrieval methods such as tfisf and BM@3iraited because they are
simple adaptations of document retrieval techniques dmdefore, they involve some sort
of correction to avoid retrieving many long texts (etgin BM25) but they do not have
the opposite tool: some correction to retrieve more longste®tandard models without
length normalization (tfisf or BM25 settirtgto 0) have already some tendency towards long
pieces of text (because long sentences match more termsgjivart our findings, this is not
sufficient to improve the model’s performance. Howevers #iso opens the door to future
developments, or extensions of current SR models to trydowatt for this tendency. This
will also help to understand whether the important benefigrted here come exclusively
from promoting long sentences or, on the contrary, it is thfination of retrieving long
sentences and localized smoothing the reason behind sodmpgoformance.

5 Conclusions and Future Work

In this paper, we proposed several novel probabilistic LMaddress the SR problem by
including the local context. The context provided by theuwdtnent meant that the estimate
of relevance was based on the sentence, the document andehe 4s part of the sen-
tence language model, localized smoothing was includedowige a better estimate of the
probability of a term in a sentence. The importance of seetemvithin the document was
also included in our models. In a comprehensive set of exqaaris performed over several
TREC test collections, we have compared the proposed magdalsst existing SR models.
Our experiments showed that using both forms of local cdrdignificantly outperforms
the standard LM approach applied to sentence retrievaltendurrent state of the art sen-
tence retrieval models. This is an important advancemetheinlevelopment of effective SR
methods. More specifically, it was found that:
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Fig. 5 Comparative between DIR and JM against their variants denisig a sentence length prior (trained
with TREC 2002 and tested with TREC 2003 and TREC 2004).

— Using localized smoothing (2S-I) improves the performaoiciae LMs methods (by up
to 13.8% improvement in mean average precision (MAP)).

— Including sentence importance significantly improves tegggmance of all the LM
approaches.

— LMs that use local context significantly outperform the eutrstate of the art.

It was also shown that the improvements in the proposed rdstivere partly due to their
tendency to favor longer sentences. This finding demomestitaiat the naive application of
document retrieval models to other retrieval tasks can teadon-optimal performance;
and warrants the development of sentence retrieval metivbdsh account for the length
normalization problem. These findings suggest that funinegress in the area of sentence
retrieval is possible, and that more sophisticated, ancerafiective models can be devel-
oped by incorporating the local context within the LM frantglu This work motivates
future research and development on:



22

(i) developing other methods in a principled fashion to &stude local context, i.e. chang-

(ii)

ing the vector representation in tfisf, including a sentemgertance factor, or including
the local context in the classic Probabilistic Model for IR,

instead of considering the closest surrounding sesgsifprevious and next), consider a
variable number of surrounding sentences,

(iii) define a four-mixture model that combines the sentettoelocal context, the document

(iv)

and the background model,
the madification of pivoted length normalization, [25]BM25 to do SR promoting long
sentences; or sentence priors for LMs to investigate thgttemormalization issues,

(v) other estimation methods of the LMs and priors, alondghwwititomatic parameter esti-

(vi)

mation techniques, and
the application and extension of the Language Modéfirmmework to other tasks, such
as query-biased summarization or novelty detection.
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A Appendix
A.1 Localized Smoothing

A.1.1 Training with TREC 2003

P@10 MAP R-Prec
BM25 k1=l.l,b=0, k3=0 k1=l.4, b=0, k3=0 k1=l.l,b=0, k3=0

p(als,d) p(als.cs) p(als,d) p(als.cs) p(als,d) p(als.cs)

3MM  A=0.9,y=0.1 A=0.9,y=0.1 A=0.9,y=0.1 A=0.9,y=0.1 A=0.9,y=0.1 A=0.8,y=0.1
2S  A=0.4,u=50 A=0.2,u=1 A=0.6,u=100 A=0.1,u=1  A=0.9,=5000 A=0.5,pu=1
2S-1  A=0.3,u=250 A=0.3,u=500 A=0.8,u=500 A=0.9,=1000 A=0.8,u=1000 A=0.4, =500
DIR 1=2500 1=500 1=100

IM A=0.1 A=0.1 A=0.1

Table 10 Optimal parameter settings in the training collection (TQRED03) for BM25 and LMs without
p(ds).

p(qls) p(qls,d) p(qls,cs)
Context n/a Document Surrounding Sents.
tfisf BM25 DIR JM | 3MM 25 25-T [3MM 25 25-T
(LMB)
TREC 2002
P@io0 .2041 .204% 1612 1163 [.1122 1265 .1918f [.1245 1265 1755
A%(tfisf) (+0.0) (-21.0) (-43.0) | (-45.0) (-38.0) (-6.0) |(-39.0) (-38.0) (-14.0)
A%(LMB)  (+26.6) (+26.6) (-27.9) | (-30.4)  (-21.5) (+19.0) | (-22.8) (-21.5) (+8.9)
MAP 1094t .11021 |.0937 .0861 | .0849 .0938 .1218* |.0837 .0916  .1095%
A%(tfisf) (+0.7) (-14.4) (.21.3) | (-22.4)  (-14.3) (+11.3) | (-23.5) (-16.3) (+0.1)
A%(LMB)  (+16.8) (+17.6) (-8.1) |(-9.4) (+0.1) (+30.0) | (-10.7) (-2.2) (+16.9)
R-Prec 1659t  .1677t |.1390 .1252 | .1385 1512 1841 | .1367 1332 .1670t
A%(tfisf) (+1.1) (-16.2) (-24.5) | (-16.5)  (-8.9)  (+11.0) | (-17.6) (-19.7) (+0.7)
A%(LMB)  (+19.4) (+20.6) (-9.9) | (-0.9) (+8.8) (+32.4) | (-1.7) (-4.2)  (+20.1)
TREC 2004
P@i0 .4300 .4380 .4020 .3580 [.3560 3220  .4660*f] .3260 .3420 .4760%
A%(tfisf) (+1.9) (-6.5) (-16.7) | (-17.2)  (-25.1) (+8.4) |[(-24.2) (-20.5) (+10.7)
A%(LMB) (+7.0)  (+9.0) (-10.9) | (-11.4) (-19.9) (+15.9) | (-18.9) (-14.9) (+18.4)
MAP 2358t .2368*t | .2240 .2131 | .2199 .2204 2607 |.2124 2204 .2496*t
A%(tfisf) (+0.4) (-5.0) (-9.6) | (-6.7) (-6.5)  (+10.6) | (-9.9) (-6.5)  (+5.9)
A%(LMB)  (+5.3)  (+5.7) (-4.9) | (-1.8) (-1.6)  (+16.4) | (-5.2) (-1.6) (+11.4)
R-Prec .3298t  .3300f1 |.3129 .3047 | .3105 .3084 .3552* | .3174 .3109  .33861
A%(tfisf) (+0.1) (-5.1) (-7.6) | (-5.9) (-6.5) (+7.7) |(-3.8) (-5.7) (+2.7)
A%(LMB) (+5.4)  (+5.5) (-2.6) | (-0.8) (-1.4) (+13.5) | (+1.4) (-0.6) (+8.2)

Table 11 P@10, MAP and R-Prec in the test collections (TREC 2002 & TRB@). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. LMB arerked with .
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A.1.2 Training with TREC 2004

P@10 MAP R-Prec

BM25 ki=1.0,b=0, k3=0 k1=1.0,b=0, ks=0 k1=1.0,b=0, k3=0
p(gls,d) p(als.cs) p(gls,d) p(als.cs) p(gls,d) p(als.cs)

3MM  A=0.8,y=0.1  A=0.8,y=0.1 A=0.9,y=0.1 A=0.8,y=0.1 A=0.7,y=0.1 A=0.7,y=0.1
2S  A=0.8,u=10000 A=0.2,u=1  A=0.1,u=250 A=0.1,u=1  A=0.7,u=100 A=0.8, =500
2S-1  A=0.6,u=250 A=0.4,u=500 A=0.8,1=100 A=0.7,u=500 A=0.7,u=100 A=0.8, =500
DIR U=250 =500 U=5000
JM A=0.1 A=0.1 A=0.1

Table 12 Optimal parameter settings in the training collection (TQRED04) for BM25 and LMs without
p(ds).

p(4qls) p(qls,d) p(4qls,cs)
Context n/a Document Surrounding Sents.
tfisf BM25 DIR JM SMM 28 28-T |3MM 28 28-T
(LMB)
TREC 2002

P@10 2041 .2041F |.1633 1163 [.1061 1531 2245 .1286 1265 1837
A%(tfisf) (+0.0) (-20.0) (-43.0) | (-48.0) (-25.0) (+10.0) | (-37.0) (-38.0) (-10.0)
A%(LMB) (+25.0) (+25.0) (-28.8) | (-35.0) (-6.2) (+37.5) | (-21.2)  (-22.5) (+12.5)
MAP 10941t 1102t | .0937 .0861 |.0849 .0917 .1200r .0919 .0916 10961

A%(tfisf) (+0.7) (-14.4) (-21.3) | (-22.4) (-16.2) (+9.7) |(-16.0) (-16.3) (+0.2)
A%(LMB) (+16.8) (+17.6) (-8.1) | (-9.4) (-2.1) (+28.1) | (-1.9) (-2.2) (+17.0)
R-Prec 16591t  .16771 | .1406 1252 | .1296 .1448 .1780t .1367 1362 .16821

A%(tfisf) (+1.1) (-15.3) (-24.5) | (-21.9) (-12.7) (+7.3) |(-17.6) (-17.9) (+1.4)
A%(LMB) (+18.0) (+19.3) (-11.0) | (-7.8) (+3.0) (+26.6) | (-2.8) (-3.1) (+19.6)

TREC 2003

P@10 7480 7520 |.7140 .5600 [ .5480 .5800 7400 [ .5400 5320 .7540F

A%(tfisf) (+0.5) (-4.5) (-25.1) | (-26.7)  (-22.5) (-1.1) (-27.8)  (-28.9) (+0.8)

A%(LMB)  (+4.8) (+5.3) (-21.6) | (-23.2) (-18.8) (+3.6) |(-24.4) (-25.5) (+5.6)
MAP 3851t  .3846t1 | .3638 .3474 | .3555 .3503 .4098* | .3532 .3494 39001

AY%(tfisf) (-0.1) (-5.5) (-9.8) | (-7.7) (-9.0) (+6.4) |(-8.3) (-9.3) (+1.3)

A%(LMB)  (+5.9) (+5.7) (-4.5) | (-2.3) (-3.7) (+12.6) | (-2.9) (-4.0) (+7.2)
R-Prec 45811t  .4580t1 | .4453 4416 | .4487 4424 ATA4% | 4489 4457 46111

A%(tfisf) (-0.0) (-2.8) (-3.6) | (-2.1) (-3.4) (+3.6) | (-2.0) (-2.7) (+0.7)

A%(LMB)  (+2.9) (2.9) (-0.8) | (+0.8) (-0.7) (+6.5) |(+0.8) (+0.1) (+3.5)

Table 13 P@10, MAP and R-Prec in the test collections (TREC 2002 & TRBEQ@3). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. LMB arerked with .
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A.2 Sentence Importance

A.2.1 Training with TREC 2003

P@10 MAP R-Prec
BM25 k1=1.1,b=0, k3=0 k1=1.4,b=0, k3=0 k1=1.1,b=0, k3=0

p(als,d) p(als.cs) p(gls,d) p(dls,cs) p(qls,d) p(als.cs)

3MM  A=0.6,y=0.1 A=0.7,y=0.1 A=0.8,y=0.1 A=0.8,y=0.1 A=0.1,y=0.8 A=0.8,y=0.1
2S A=0.1,u=1 A=0.1,u=1 A=0.1,u=1 A=0.1,pu=1 A=0.1,u=250 A=0.2,u=1
25-1 A=0.1,u=10 A=0.1,u=5 A=0.1,u=1 A=0.1,u=1 A=0.8,u=1 A=0.7,u=5
DIR u=1 u=1 u=10

JM A=0.1 A=0.1 A=0.4

Table 14 Optimal parameter settings in the training collection (T.REDO3) for LMs withp(d|s).

p(qls)p(d]s) p(qls,d)p(d|s) p(als,cs)p(dls)

Context Sentence Only Document [ Surrounding Sents.

tfisf BMZ25 | DIR JM [3MM 2S 25-1 [3MM 25 2S5-T
TREC 2002
P@10 .2041T 2041t [.2429FT 24491 [.2429tf 2469t  .2429t% [.2449%f 2449t  .2449%
A%(tfisf) (#0.0) |(+19.0) (+20.0) |(+19.0) (+21.0) (+19.0) [(+20.0) (+20.0) (+20.0)
A%(LMB) (+26.6) (+26.6) [(+50.7) (+51.9) |(+50.7) (+53.2) (+50.7) |(+51.9) (+51.9) (+51.9)
MAP 10941 11021 |.1349*%  .1347*t |.1333*t .1344*t .1329*t|.1342*t .1343*t .1347*t
A%(tfisf) (+0.7) (+23.3) (+23.1) |(+21.8) (+22.9) (+21.5) |(+22.7) (+22.8) (+23.1)
A%(LMB) (+16.8) (+17.6) |(+44.0) (+43.8) |(+42.3) (+43.4) (+41.8) |(+43.2) (+43.3) (+43.8)
R-Pre 16591  .1677t |[.2051* .2046*t |.1947t  .1934t 19431 |.2031*t .2033*t .2037*t
A%(tfisf) (+1.1) |(+23.6) (+23.3) [(+17.4) (+16.6) (+17.1) |(+22.4) (+22.5) (+22.8)
A%(LMB) (+19.4) (+20.6) |(+47.6) (+47.2) |(+40.1) (+39.1) (+39.8) |(+46.1) (+46.3) (+46.5)
TREC 2004

P@10 4300 .4380 4420 4480 4400 4420 4360 |.4460 .4400 4440

A%((tfisf) (+1.9) (+2.8) (+4.2) |(+2.3) (+2.8) (+1.4) |(+3.7) (+2.3) (+3.3)
A%(LMB) (+7.0) (+9.0) [(+10.0) (+11.4) [(+9.5) (+10.0) (+8.5) |(+10.9) (+9.5) (+10.4)
MAP 23581  .2368*f |.2549*t .2548*t |.2531*f .2538*f .2532*t|.2550*t .2551*t .2553*

A%(tfisf) (+0.4) (+8.1) (+8.1) |(+7.3) (+7.6) +7.4) |(+8.1) (+8.2) (+8.3)
A%(LMB) (+5.3) (+5.7) |[(+13.8) (+13.8) |(+13.0) (+13.3) (+13.0) |(+13.8) (+13.9) (+14.0)
R-Prec .3298t .3300t1 |.3538*t .3527*t |.3495t  .34941  .3496t |.3545* .3536*f .3538*t

A%(tfisf) (+0.1) (+7.3) (+6.9) |(+6.0) (+5.9) (+6.0) |(+7.5) (+7.2) (+7.3)
A%(LMB) (+5.4) (+5.5) (+13.1) (+12.7) |(+11.7) (+11.7) (+11.7) |(+13.3) (+13.0) (+13.1)

Table 15 P@10, MAP and R-Prec in the test collections (TREC 2002 & TRB@). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. startiB@R (LMB) are marked with t.
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A.2.2 Training with TREC 2004

P@10 MAP R-Prec
BM25 k1=1.0,b=0, k3=0 k1=1.0,b=0, k3=0 k1=1.0,b=0, k3=0

p(qls,d) p(gls,cs) p(als,d) p(als.cs) p(gls,d) p(dls,cs)

3MM  A=0.9,y=0.1 A=0.4,y=0.4 A=0.8,y=0.1 A=0.4,y=0.5 A=0.6,y=0.1 A=0.4,y=0.5
2S A=0.1,u=1 A=0.2,u=25 A=0.1,p=1 A=0.1,pu=1 A=0.2,u=1 A=0.1,u=25
2S-| A=0.2,u=5 A=0.3,u=5 A=0.1,u=1 A=0.1,u=1 A=0.4,u=50 A=0.4,u=1
DIR u=5 u=1 u=1

JM A=0.1 A=0.1 A=0.1

Table 16 Optimal parameter settings in the training collection (T.RED04) for LMs withp(d|s).

p(qls)p(d]s) p(qls,d)p(d|s) p(qls,cs)p(dls)
Context Sentence Only Document [ Surrounding Sents.
tfisf BMZ25 | DIR JM [3MM 25 25-1 [3MM 25 25-1
TREC 2002

P@10 .2041F  .2041f [.2449%  .2449%1 [.1796 2469 .2469r [.2449T 2449t  .2449%
A%(tfisf) (+0.0) |(+20.0) (+20.0) [(-12.0) (+21.0) (+21.0) |(+20.0) (+20.0) (+20.0)
A%(LMB) (+25.0) (+25.0) |(+50.0) (+50.0) |(+10.0) (+51.2) (+51.2) |(+50.0) (+50.0) (+50.0)
MAP 10941 1102t |[.1349* .1347*t |.1333*F .1344*t .1329*t|.1344*t .1343*t .1347*t
A%(tfisf) (+0.7)  [(+23.3) (+23.1) |(+21.8) (+22.9) (+21.5) |(+22.9) (+22.8) (+23.1)

A%(LMB) (+16.8) (+17.6) |(+44.0) (+43.8) |(+42.3) (+43.4) (+41.8) |(+43.4) (+43.3) (+43.8)
R-Prec 1659 1677t |.2041% .2041* |.2018*f .2022*t .2007*t|.2033*t .2033*f .2032*t

A%(tfisf) (+1.1) (+23.0) (+23.0) |(+21.6) (+21.9) (+21.0) |(+22.5) (+22.5) (+22.5)
A%(LMB) (+18.0) (+19.3) |[(+45.2) (+45.2) |(+43.5) (+43.8) (+42.7) |(+44.6) (+44.6) (+44.5)
TREC 2003
P@10 .7480T .7520f [.7500 7480 [.6960 7440 .7360 [.7360 7360 7420
A%(tfisf) (+0.5) |(+0.3)  (+0.0) [(-7.0) (-0.5) (-1.6) |(-1.6) (-1.6) (-0.8)
A%(LMB) (+4.8) (+5.3) (+5.0) (+4.8) |(-2.5) (+4.2)  (+3.1) |[(+3.1) (+3.1) (+3.9)
MAP 38511 .38461 |[.4144* .4137*t |.4111*t .4117*t .4113*t|.4126*t .4135*f .4139*t
A%(tfisf) (-0.1) (+7.6) (+7.4) |(+6.8) (+6.9) (+6.8) |(+7.1) (+7.4) (+7.5)

A%(LMB) (+5.9) (+5.7) (+13.9) (+13.7) |(+13.0) (+13.2) (+13.1) |(+13.4) (+13.7) (+13.8)
R-Prec 45811  .45801 |[.4793*t .4797*t |.4800*t .4805* .4795*t |.4791*f .4803*t .4800*t
A%(tfisf) (-0.0) (+4.6) (+4.7) |(+4.8) (+4.9) (+4.7) |(+4.6) (+4.8) (+4.8)
A%(LMB) (+2.9) (+2.9) (+7.6) (+7.7) | (+7.8) (+7.9) +7.7)  |(+7.6) (+7.9) (+7.8)

Table 17 P@10, MAP and R-Prec in the test collections (TREC 2003 & TRB@). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. startiBdR (LMB) are marked with .




