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Abstract Employing effective methods of sentence retrieval is essential for many tasks in
Information Retrieval, such as summarization, novelty detection and question answering.
The best performing sentence retrieval techniques attemptto perform matching directly be-
tween the sentences and the query. However, in this paper, weposit that the local context
of a sentence can provide crucial additional evidence to further improve sentence retrieval.
Using a Language Modeling Framework, we propose a novel reformulation of the sentence
retrieval problem that extends previous approaches so thatthe local context is seamlessly in-
corporated within the retrieval models. In a series of comprehensive experiments, we show
that localized smoothing and the prior importance of a sentence can improve retrieval ef-
fectiveness. The proposed models significantly and substantially outperform the state of the
art and other competitive sentence retrieval baselines on recall-oriented measures, while re-
maining competitive on precision-oriented measures. Thisresearch demonstrates that local
context plays an important role in estimating the relevanceof a sentence, and that existing
sentence retrieval language models can be extended to utilize this evidence effectively.
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1 Introduction

The sentence retrieval (SR) task consists of finding relevant sentences from a document
base given a query. This task is very useful in a wide range of Information Retrieval (IR)
applications, such as summarization, question answering,and opinion mining. SR is a chal-
lenging problem area that has attracted a great deal of attention recently [1,29,18,16,13].
The bulk of SR methods proposed in the literature are a straight-forward adaptation of stan-
dard retrieval models (such tf-idf, BM25, Language Models,etc), where the sentence is the
unit of retrieval, as opposed to the document. This leads to SR models which estimate rel-
evance based only on the match between query and sentence terms. The state of the art SR
method is known as term frequency - inverse sentence frequency (tfisf) which is analogous
to the traditional tf-idf method used in document retrieval[1,13]. While, numerous attempts
to develop more sophisticated models that employ techniques, such as Natural Language
Processing and Clustering have been proposed [11,8,33], they have failed to significantly
and consistently outperform the tfisf method. Consequently, little progress has been made in
terms of improving sentence retrieval effectiveness.

To develop a more effective sentence retrieval method, we argue that the assumption
engaged as a result of the naive application of document retrieval, i.e. that all sentences are
independent, does not hold. This is because a sentence is surrounded by other sentences
which help to contextualize it. Also the sentence is part of adocument, and this sentence
may or may not be important in representing the topic of the document. Presently, thislocal
contextis either ignored or underutilized by existing methods. We posit that by incorporating
the local context within SR models, more effective SR methods can be developed.

The reasons for this are as follows: Any model using only standard term statistics to
match query and sentences will suffer severely from the vocabulary mismatch problem be-
cause there is little overlap between the query and sentenceterms. Intuitively, the local
context could be used to improve retrieval, by helping to mitigate the difficulties posed by
the vocabulary mismatch rooted in the sparsity of sentences. Additionally, current methods
do not exploit the importance of a sentence in a document, which we posit is an important
factor in determining the relevance of a sentence. A relevant sentence needs to be indicative
of the query topic, but also representative and important inthe context of the document, i.e.
we assume that key statements within a document are more likely to be relevant.

To this aim, we propose a novel reformulation of the SR problem that includes the local
context in a Language Modeling (LM) framework. Within this principled framework, it is
possible to naturally include additional evidence into thesmoothing process in order to
enrich the representation of sentences. Also, the model provides a way to include a query-
independent probability that encodes the importance of a sentence in a document. In a set
of experiments performed over several TREC test collections, we compare the proposed
models against existing SR models and demonstrate that using local context within a LM
framework delivers retrieval performance that significantly outperforms the current state of
the art in sentence retrieval.

The remainder of this paper is organized as follows. Section2 presents previous work
related to this research. Section 3 explains the methods we propose to address the SR prob-
lem. Section 4 reports on the conducted experiments and analyzes the outcomes. The paper
concludes with Section 5, where a summary of our findings and directions for future work
are presented.
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2 Related Work

In this paper, we adopt the same definition of the sentence retrieval problem as proposed
in the TREC Novelty Tracks [5,28,27]. Although these tracksare mostly focused on re-
searching redundancy filtering, they also involve a SR task that enables research into how to
retrieve sentences that are relevant to a given query.

As previously mentioned, there have been numerous SR methods that have been pro-
posed in the literature. One of the first methods was coined astfisf [1]. It is an adaptation
of the document retrieval method tf-idf, but at the sentencelevel. This simple approach is
regarded as the state of the art in SR as it has been shown to consistently outperform other
methods [1,16,4]. As a matter of fact, this parameter-free method has been shown to per-
form at least as well as the best performing empirically tuned and trained SR models based
on BM25 or LMs [16,4]. While this tends not to be the case in document retrieval, on other
tasks where the unit of retrieval is smaller such as passage retrieval, vector-space models
have performed empirically well. For instance, Kaszkiel and Zobel [9,10] showed that some
cosine and pivoted models are highly effective for documentranking based on passages. Al-
though we evaluate here SR (rather than document retrieval), past studies on passage-based
document retrieval confirm also that vector-space methods are also state of the art models
for query-passage scoring.

In [11], Li and Croft analyzed the components of sentences and identified patterns (such
as phrases, name entities and combination of query terms) toestimate the relevance of the
sentences. Although this method succeeded in detecting redundant information, it was not
able to improve the tfisf baseline to estimate relevance. Clustering methods have been also
considered as alternative techniques to improve SR models,such methods have shown mixed
performance [8,33] seldom improving upon the tfisf baseline. These cluster methods also
incur additional computation costs and increased complexity making them unattractive to
implement. Query expansion techniques have been also proposed to improve the perfor-
mance of current sentence retrieval approaches. Among them, the most common is query
expansion via pseudo-relevance feedback [3,13] and with selective feedback [7,16], or rel-
evance models [12]. While query expansion techniques tend to improve performance by
addressing the vocabulary mismatch problem, they rely on good performance during the
first pass of retrieval to realize such improvements.

In this paper, we reformulate the problem of sentence retrieval within the LM frame-
work, where localized smoothing is employed to improve the representation of sentences.
The work most related to this research has been performed by Losada and Fernández [16]
and Murdock [18]. In [16], the local context of a sentence wasinformally introduced into
the computation of sentence similarity. Basically, extra weight was given to those terms that
have high frequency in the associated documents. In [18], the estimation of the sentence
language model included some local context, and combines the evidence from the sentence
and document level. More specifically, a simple mixture model of the sentence, document
and collection was proposed in order to form a better representation of the sentence. From
the limited experiments reported, Murdock showed that the mixture model was better than
other LM methods with the TREC novelty data. However, the results are far from conclusive
because competitive SR methods, such as tfisf, were not evaluated. Nor was any indication
of the sensitivity of the method w.r.t the smoothing parameters reported. In this paper, we
provide a more general framework that encompasses both previous formulations using Lan-
guage Models, but also provides avenues for incorporating other forms of local context.
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3 Sentence Retrieval Models

The SR task consists of estimating the relevance of each sentences in a given document set,
and supplying the user with a ranked list of sentences that satisfy his/her need (expressed
as a user queryq). In this section, we first outline the standard LM approach applied to the
problem of SR. Then, we propose a novel reformulation which includes local context seam-
lessly and intuitively within the model. Finally, we conclude the section with a description
of baseline SR models (tfisf and BM25).

3.1 Sentence Retrieval with Language Models (Standard Method)

Language Models are probabilistic mechanisms to explain the generation of text [19]. The
simplest LM is the unigram LM, which consists of associatinga probability to each word
of the vocabulary [31,6,17]. This is a very intuitive and powerful approach that has been
shown to be very effective in many IR tasks, such as ad-hoc retrieval [31], distributed IR
[24], and expert finding [2].

Given the SR problem, the idea is to estimate relevance according to the probability of
generating a sentencesgiven the queryq, expressed asp(s|q). Instead of directly estimating
this probability, Bayes Theorem is applied, and sentences can be ranked using the query-
likelihood approach,p(q|s)1. The probability of a queryq given the sentences can then
be estimated using the standard LM approach, where for each sentences, a sentence LM
is inferred. From the sentence modelθs it is assumed that each query termt is sampled
independently and identically, such that:

p(q|θs) = ∏
t∈q

p(t|θs)
c(t,q) (1)

where,c(t,q) is the number of times the termt appears inq. The sentence model is con-
structed through a mixture between the probability of a termin the sentence and the proba-
bility of a term occurring in some background collection (i.e. maximum likelihood estima-
tors of sentence and collection, respectively). This is usually performed in one of two ways
by using (a) Jelinek-Mercer (JM) smoothing as shown in Equation 2, or (b) Dirichlet (DIR)
smoothing as shown in Equation 3.

p(t|θs) = (1−λ )p(t|s)+λ p(t) (2)

p(t|θs) =
c(t,s)+ µ p(t)

c(s)+ µ
(3)

wherec(t,s) is the number times thatt appears ins, andc(s) is the number of terms in
the sentence.λ and µ are parameters that control the amount of smoothing. Note that, in
Equations 2 and 3, the smoothing expression ignores any local context and resorts immedi-
ately to the most general background knowledgep(t). This is a strong assumption because
it focuses the computation on sentence and collection statistics, without regard to any ref-
erence to other terms and phrases in sentences within the same document. As previously
mentioned, many SR models [1] take similar simplifications as the query-sentence similar-
ity values do not take into account any information from the document (i.e. all sentences are
treated independently).

1 This assumes that there is not a priori preference for particular types of sentences, i.e.p(s) is uniform.
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JM and DIR smoothing yield to retrieval matching functions with specific length re-
trieval trends. In [14] and [26], the authors studied these trends. In [14], Losada and Az-
zopardi reported that DIR smoothing performs better than JMsmoothing by showing that
the document length pattern resembles the relevance pattern. They showed that DIR pri-
ors balance the query modeling and the document modeling roles, whereas JM smoothing
does not consider the document length in the smoothing process. Thus, JM leads to poor
retrieval performance because documents tend to be longer than the documents retrieved by
DIR and the smoothing cannot compensate this. In [26], Smucker and Allan demostrated
that DIR smoothings performance advantage arises from an implicit document prior that fa-
vors longer documents by smoothing them less. They tested the performance of a DIR prior
and the JM smoothing with and without the document prior and showed that both methods
smooth documents identically, except that the DIR prior smooths longer documents less.
The result of this meant that the DIR prior tends to favor the retrieval of longer documents.
Given the sentence retrieval problem, it is an open questionas to what kind of length cor-
rection is appropriate for this task and whether the implicit length correction of smoothing
methods employed help or hinder in the retrieval of relevantsentences.

3.2 Sentence Retrieval using Language Models with Local Context

In this section, we relax the independence assumption between sentences and assume that
the document (i.e. the local context) plays an important role in determining the relevance of
a sentence. Therefore, we treat the SR problem as a problem ofestimating the probability of
the query and the document given the sentence, i.e. is the sentence likely to be a generator
of both the query and the document? This assumes that there isa correlation between this
likelihood, p(q,d|s) (whered is the document that containss) and the relevance of the
sentence. Thus, we posit that relevance is affected by how well the sentence explains both
the document and the query topic (as opposed to the query topic alone). In order to simplify
the estimation of the conditional joint probability, we canrewrite it as follows:

p(q,d|s) = p(q|s,d)p(d|s) (4)

wherep(q|s,d) is the probability of the query given the sentence and document, andp(d|s)
is the probability of the document given the sentence. Now wecan clearly see that the
estimation of the query likelihood will depend on both the sentence and the document. In
addition, thep(d|s) provides another way in which the local context is captured,by encoding
the importance of a sentence within the document. In the nextsubsections we consider how
these probabilities can be estimated.

3.3 Estimatingp(d|s)

The probability of generating the document given the sentence,p(d|s), can be regarded as a
measure of the importance of the sentence within the topic ofthe document. Formally, this
expression can be rewritten using Bayes’ rule:

p(d|s) =
p(s|d)p(d)

p(s)
(5)

wherep(s|d) is the probability of a sentence given a document, thep(s) the probability of a
sentence, andp(d) is the prior probability of a document. Here, we assume that there is no
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a priori preference towards any of the documents, and treatp(d) as a constant2. The p(s|d)
represents how likely the sentence is to be generated from the document, whereasp(s)
represents how likely the sentence is to be generated randomly. The ratio between the two
expresses the importance of the sentence. Hence, in order toestimatep(d|s), we compute
p(s) as:

p(s) = ∏
t∈s

p(t)c(t,s) (6)

wherep(t) can be calculated using the maximum likelihood estimator ofthe term in a large
collection: p(t|C) (whereC is the collection). Analogously, we define the probability of a
sentences given a documentd as:

p(s|d) = ∏
t∈s

p(t|d)c(t,s) (7)

wherep(t|d) is the probability of generatingt from the maximum likelihood estimator of the
document, andc(t,s) usually equals one as most terms only appear once in a sentence (unless
the term is a stop word). It is to be noted that the problem of obtaining null probabilities
from these estimates does not exist because terms that occurin a sentence will have non-
zero probability in the LM of the document. Observe thatp(d|s) will give preference to
those sentences that are central to the document’s topics (i.e. high p(s|d)) but also rare
within the collection (i.e. lowp(s)). In this paper we carefully study the effect ofp(d|s)
on performance, and have designed a complete set of experiments where we compare the
estimation described above against the simplest (and naive) assumption:p(d|s) is uniform.

3.4 Estimatingp(q|s,d)

In order to estimate the query likelihood given the sentenceand the document, we do this in
a similar manner to the standard approach: first we assume that there is a modelθs,d which
generates the query terms, such that the probability of query given the sentence and the
document is:

p(q|s,d) = ∏
t∈q

p(t|θs,d)c(t,q) (8)

The LM p(t|θs,d) is determined by the sentence and the local context denoted by d, thus
we can represent the model as a mixture between the probability of a term in the sentence
and the probability of a term in a document, which is then smoothed by the background
model. The idea is that the terms in the document provide meaning to the sentence, and can
improve the estimate of the relevance of a sentence.

For the time being, we assume thatp(t|d) is the normalized term frequency oft in d,
but later we explore restricting this estimate to the sentences surrounding the sentences.

There are several ways in which a mixture model can be defined using smoothing:

2 A simple alternative, which could be explored as part of future work, would be to estimate the prior
based on the estimated relevance of the document.
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Three Mixture Model (3MM): The first model we propose here is a mixture of three LMs.
This model assumes that queries are generated from a mixtureof three different probability
distributions: a LM for the sentence,p(t|s), a LM for the document,p(t|d), and a LM for
the collection,p(t|C) (or, simply,p(t)). Formally, we define this approach as:

p(t|θs,d) = λ p(t|s)+ γ p(t|d)+(1−λ − γ)p(t) (9)

whereλ andγ are smoothing parameters such thatλ ,γ ∈ [0,1]. This estimator was initially
proposed by Murdock in [18]. Other authors have also applied3MMs for other tasks such as
question-answering [30]. Since the 3MM is very general, it is worth considering alternatives
which smooth the sentence with the document and the collection but in a length-dependent
way. This can be achieved by either first smoothing with the document proportionally to
the sentence, and then interpolating with the collection (i.e. the Two Stage Model). Or,
alternatively, first interpolating the sentence and the document, and then smoothing with the
collection proportional to the sentence length. We shall detail these methods next.

Two-Stage Model (2S):
The two-stage model adopted here is a variant of the well-known two-stage model used

for document retrieval [32]. This model is a combination of Dirichlet (DIR) and Jelinek-
Mercer (JM) smoothing. Rather than smoothing with the collection model in both stages,
we adapt here the model to the characteristics of the SR task and, therefore, the DIR stage
usesp(t|d) while the JM stage usesp(t) for smoothing purposes. This is a simple and natural
application of the two-stage smoothing for our problem. Theformal expression is:

p(t|θs,d) = (1−λ )
c(t,s)+ µ p(t|d)

c(s)+ µ
+λ p(t) (10)

Two-Stage Model, Stages Inverted (2S-I): We propose here a two-stage model where the
order in which DIR and JM smoothing methods are applied is inverted:

p(t|θs,d) =
(

1−β
)(

(1−λ )p(t|s)+λ p(t|d)
)

+β p(t) (11)

whereβ = µ
c(s)+µ . The sentence model is first smoothed using linear interpolation with

the document’s model. Next, Dirichlet is applied to smooth with the collection model3. By
smoothing in this way the first stage provides a new estimate of the foreground terms by
combining the sentence and the document (through linear interpolation), and then the next
stage adjusts the estimates with the background language model proportional to the length of
the sentence. By inverting the smoothing methods, different length normalization schemes
are applied to the sentence language models. In later sections, we shall analytically and
empirically show how the 2S and 2S-I models differ in this respect.

Observe that DIR and JM smoothing can also be included withinthis framework assum-
ing that p(q|s,d) = p(q|s) and applying DIR or JM to estimate the likelihood. Ifp(d|s) is
uniform, then these models are equivalent to the ones discussed in section 3.1. However, if
p(d|s) is not uniform then we get a novel combination of these popular smoothing strategies
with the estimation of the importance of sentences in documents. Table 1 summarizes the
different proposed models and informs about what configurations are novel (and, therefore,
have not been tested in the literature).

3 As shown in [31], Dirichlet smoothing can be rewritten in a linear interpolation fashion with a proper
document-dependent parameter.
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Likelihood Smoothing Without With
p(d|s) p(d|s)

p(q|θs) JM [12,13,16] untested
p(q|θs) DIR [12,13,16] untested

p(q|θs,d) 3MM [18] untested
p(q|θs,d) 2S untested untested
p(q|θs,d) 2S-I untested untested

Table 1 Language Models included in our study. Most of the configurations are novel and have not been
tested in the literature.

3.5 Baseline Sentence Retrieval Models

For completeness, we also include the score functions for popular SR models, tfisf [1] and
BM25 [22], which we shall employ as baselines. tfisf was adopted in the literature as the
state-of-the-art sentence retrieval method [1]. In [16] wedemonstrated that it performs sim-
ilar to tuned BM25. BM25 is a simple adaption of the popular BM25 formula used in docu-
ment retrieval to the SR case, such that:

simBM25(s,q) = ∑
t∈q∩s

log
N−s f(t)+0.5

s f(t)+0.5
·

(k1 +1)c(t,s)

k1

(

(1−b)+bc(s)
avsl

)

+c(t,s)
·
(k3 +1)c(t,q)

k3 +c(t,q)

(12)
whereN is the number of sentences in the collection,s f(t) is the number of sentences that
containt, avsl is the average sentence length andk1, b andk3 are parameters.

On the other hand, we also used tfisf, which is a state of the artSR baseline. This mea-
sure is an adaptation of tf-idf at sentence level:

simtfisf(s,q) = ∑
t∈q∩s

log(c(t,q)+1) log(c(t,s)+1) log

(

N+1
0.5+s f(t)

)

(13)

Unlike the BM25 method, this method is parameter-free. Its performance for sentence re-
trieval has been shown to be comparable to the best performance obtained by BM25 [16,
13].

Besides these models, we also experimented with variants oftfisf and BM25 that support
the combination of sentence and contextual statistics. These variants are discussed in Section
4.2.

4 Empirical Study

This section presents the experimental methodology employed to thoroughly evaluate the
performance of the proposed models against existing and state of the art models. Particular
attention is paid to examining the differences in performance brought about by the inclusion
of the local context. Specifically, we hypothesize that:

1. localized smoothing will improve the estimate of the sentence models, resulting in im-
proved effectiveness, and
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2. the centrality of a sentence in a document helps to infer the relevance of a sentence, i.e.
sentences that briefly summarize a document tend to be more relevant than the rest of
sentences in the document.

4.1 Experimental Setup

As previously mentioned, we adopt the SR task as defined in theTREC novelty tracks: given
a textual query that represents an information need, a ranked set of documents is supplied
and systems have to process this ranking to extract the sentences that are estimated as rel-
evant to the information need. Along with this definition we used all three TREC Novelty
Track collections 2002, 2003 and 2004 [5,28,27]. Each collection provides the same sen-
tence retrieval task, but under different conditions. In TREC 2002, the track contains 50
topics, extracted from earlier ad hoc tracks. TREC 2003 and TREC 2004 contain also 50
topics each but these were built specifically by assessors for this task. Because in TREC
2002 and TREC 2003 the aim was to find relevant sentences in relevant documents, all the
documents of the ranked list of documents in TREC 2002 and TREC 2003 are relevant. In
contrast, in TREC 2004 the ranked set of documents contains both relevant and non-relevant
documents. In TREC 2002, on average, only the 2.39% of sentences were judged as rele-
vant, while in TREC 2003 and TREC 2004 the number of sentencesjudged as relevant is
higher (39.07% and 15.97%, respectively). All of these collections include complete rel-
evance judgments (i.e. human assessors judged every sentence in the retrieved documents
as relevant or non-relevant). By using all three test collection it is possible to assess the
robustness of the sentence retrieval methods and thoroughly evaluate their performance.

The baseline methods and the LM models were implemented using the Lemur toolkit4.
For the experiments, each collection was indexed where standard stop words were removed
but stemming was not applied. The corresponding set of topics for each collection was used,
where short queries were constructed taking the title field of the TREC Topic. Observe that
we use short queries while the teams participating in the TREC novelty tracks were allowed
to use the whole topic. This means that the results presentedhere are not directly comparable
to the official TREC results.

For all of our experiments, we report the performance of eachmethod using three stan-
dard measures: precision at ten sentences (P@10), mean average precision (MAP) and R-
Prec. Observe that the models proposed are recall-orientedin nature, so we would expect to
witness gains in terms of MAP, and to some extent R-Prec. Thisis because the new models
are able to promote sentences that do not necessarily match many query terms, but their
context matches with some of the query terms. This should enhance the recall of relevant
sentences (in particular sentences which may not overlap with the query terms). The useful-
ness of recall in sentence retrieval can be illustrated using the application scenario presented
in the TREC novelty track [5]: where a user is examining the ranked list of documents,
and is interested in reviewing all the on-topic sentences but wants to skip through the non-
relevant sentences. In this case, navigation could be made more efficient so that they can
transverse through all the relevant sentences in all the documents. Whereas in the context
of multi-document summarization, having access to all the relevant sentences is also very
important. However, the precision oriented measures, P@10and to some extent R-Prec, also
are important for tasks likes query-biased summarization,snippet generation, and question-

4 www.lemurproject.org
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answering. Ideally, the proposed models will be able to enhance both precision and recall
based measures, but are likely to gain the largest improvements in terms of recall.

To compare the differences in performance between the different methods, statistical
significance tests were applied using the t-test with a 95% confidence level5.

During the course of our experiments, each method presentedin Section 3 was evalu-
ated. Since many of the methods required parameter tuning, we ensured a fair comparison
by employing a train-test methodology. Training of each method (except tfisf, which is pa-
rameter free) was performed on one of the three TREC novelty datasets. For BM25 we
considered the following range of values:k1=1.0-2.0 (steps of 0.1),b=0.0-1.0 (steps of 0.1)
andk3 was fixed to 0 (the effect ofk3 is negligible with short queries). For the LM methods,
λ was set to 0.1-0.9 (steps of 0.1), the range of values ofµ (for 2S and 2S-I) was{1, 5,
10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000} and the range of values forγ (for the
3MM model) was 0.1-0.9 (steps of 0.1). The parameter settings showing best performance
were then fixed. These were then used to conduct the remainderof the evaluation, which
was performed on the two remaining datasets. We experimented with the three possible
training/testing configurations (training with TREC 2002 and testing with TREC 2003 and
TREC 2004; training with TREC 2003 and training with TREC 2002 and TREC 2004; and
training with TREC 2004 and training with TREC 2002 and TREC 2003) and found the
same trends. In the next sections we report and discuss the results achieved by training with
TREC 2002 and testing with TREC 2003 and TREC 2004. However, we include the results
for the other training/testing configurations in appendix Ato further demonstrate that our
methods are robust.

Three models may be needed in order to estimate the relevanceof a sentence: a sentence
model, a local context model (where all the sentences in the document or the surround-
ing sentences where considered, depending on the type of thesmoothing applied) and the
background model (which is generated from all the documentsin the collection).

When evaluating the LM approaches, we considered differentalternatives. On one hand,
we study the impact ofp(d|s) to specifically study the effect that this extra and novel com-
ponent has on SR effectiveness. On the other hand, we considered two different contexts:
the document (as it was shown in Section 3) and the surrounding sentences (see the below
subsection).

4.1.1 Smoothing with Surrounding Sentences

In the previous sections we studied smoothing methods that includedp(t|d) within the sen-
tence model, wherep(t|d) was estimated using the maximum likelihood estimate of a term
in a document. This implies that all terms in the document arerelated to the sentence. Here,
we propose an alternative estimate ofp(t|d) which relaxes this assumption, and assumes
that only the sentences surrounding the sentence being scored are related. So given a sen-
tences, the sentences immediately preceding and followings are directly related to it and,
therefore, they constitute a closer context to the sentences. In this way, considering the
surrounding sentences only, a more accurate representation of the sentence LM should be
obtained, which we anticipate will also lead to improved performance.

In this case, given a sentences, its contextcs is composed by the previous sentencesprev,
the current sentencesand the next sentence in the documentsnext

6. Smoothing is performed

5 The t-test was shown to produce lower error rates than sign and Wilcoxon [23].
6 If s is the first or the last sentence in the document, thensprev or snext are ignored, respectively.
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by usingp(t|cs) instead ofp(t|d) in Equations 9, 10 and 11, wherep(t|cs) is the normalized
count oft that occurs insprev, sandsnext.

In the next subsection we show the results of this approach and compare them against
the results obtained when smoothing with documents insteadof surrounding sentences.

4.2 Experimental Results

The first set of experiments tested the effect of localized smoothingwithout p(d|s) (i.e. sen-
tence importance is not considered, all sentences are considered as equally important). Then,
we perform a second set of experiments that examines the impact of sentence importance.
Finally, we present additional experiments to determine whether or not the baseline models
can also be enhanced by including local context.

Influence of localized smoothing: Table 2 reports the parameter setting that optimized
performance7. Given the TREC 2002 as the training collection, Table 3 shows the perfor-
mance in the test collections of the methods against the baselines in terms of P@10, MAP
and R-Prec. The table shows the performance of models that use either the document as
context, or the surrounding sentences. The best performance is presented in bold. Statisti-
cally significant differences between a given result and tfisf are marked with an asterisk, and
statistically significant differences w.r.t. standard DIRsmoothing are marked with a † (DIR
provides the LM baseline, which is referred to as LMB). The test results obtained when
TREC 2003 and TREC 2004 were used as the training collection are also provided in the
Appendix A.

P@10 MAP R-Prec

BM25 k1=1.2,b=0, k3=0 k1=1.4,b=0, k3=0 k1=1.0,b=0, k3=0

p(q|s,d) p(q|s,cs) p(q|s,d) p(q|s,cs) p(q|s,d) p(q|s,cs)

3MM λ=0.1,γ=0.9 λ=0.7,γ=0.2 λ=0.8,γ=0.1 λ=0.8,γ=0.1 λ=0.1,γ=0.9 λ=0.1,γ=0.4
2S λ=0.9,µ=250 λ=0.1,µ=500 λ=0.8,µ=5000 λ=0.1,µ=1 λ=0.9,µ=10000 λ=0.1,µ=50
2S-I λ=0.9,µ=10000 λ=0.8,µ=500 λ=0.9,µ=5000 λ=0.6,µ=500 λ=0.7,µ=1000 λ=0.9,µ=5000
DIR µ=100 µ=500 µ=250
JM λ=0.1 λ=0.1 λ=0.9

Table 2 Optimal parameter settings in the training collection (TREC 2002) for BM25 and LMs without
p(d|s).

In Table 3, where the language models have been trained usingTREC 2002, the first
prominent result is that the 2S-I smoothing method is the best performing method in terms
of MAP and R-Prec. And this novel method is significantly better than the tfisf and DIR
baselines, when either surrounding sentences or the entiredocument is used in the estimate.
This is a good result, as it provides a simple and intuitive method that outperforms the long
standing benchmark held on these standard test collections. The results in Tables 11 and 13
also show similar improvements.

In terms of P@10, though, the performance of most of the contextually smoothed models
is slightly poorer than the baselines. The 2SI method does provide the best performance
at P@10 on the TREC 2004 collection, when using the surrounding sentences to smooth

7 The best parameter settings when smoothing with the surrounding sentences (cs) are similar.
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p(q|s) p(q|s,d) p(q|s,cs)
Context n/a Document Surrounding Sents.

tfisf BM25 DIR JM 3MM 2S 2S-I 3MM 2S 2S-I
(LMB)

TREC 2003
P@10 .7480 .7540† .6960 .5600 .5020 .5680 .7080 .5200 .4480 .7320

∆%(tfisf) (+0.8) (-7.0) (-25.1) (-32.9) (-24.1) (-5.3) (-30.5) (-40.1) (-2.1)
∆%(LMB) (+7.5) (+8.3) (-19.5) (-27.9) (-18.4) (+1.7) (-25.3) (-35.6) (+5.2)

MAP .3851† .3852† .3638 .3474 .3513 .3502 .4099*† .3532 .3494 .3893†
∆%(tfisf) (+0.0) (-5.5) (-9.8) (-8.8) (-9.1) (+6.4) (-8.3) (-9.3) (+1.1)
∆%(LMB) (+5.9) (+5.9) (-4.5) (-3.4) (-3.7) (+12.7) (-2.9) (-4.0) (+7.0)

R-Prec .4581† .4580† .4457 .4406 .4419 .4459 .4765*† .4373 .4374 .4588
∆%(tfisf) (-0.0) (-2.7) (-3.8) (-3.5) (-2.7) (+4.0) (-4.5) (-4.5) (+0.2)
∆%(LMB) (+2.8) (+2.8) (-1.1) (-0.9) (+0.0) (+6.9) (-1.9) (-1.9) (+2.9)

TREC 2004
P@10 .4300 .4380 .4200 .3580 .2940 .3540 .4300 .3420 .2720 .4700*

∆%(tfisf) (+1.9) (-2.3) (-16.7) (-31.6) (-17.7) (+0.0) (-20.5) (-36.7) (+9.3)
∆%(LMB) (+2.4) (+4.3) (-14.8) (-30.0) (-15.7) (+2.4) (-18.6) (-35.2) (+11.9)

MAP .2358† .2368*† .2240 .2131 .2195 .2203 .2550*† .2226 .2204 .2488*†
∆%(tfisf) (+0.4) (-5.0) (-9.6) (-6.9) (-6.6) (+8.1) (-5.6) (-6.5) (+5.5)
∆%(LMB) (+5.3) (+5.7) (-4.9) (-2.0) (-1.7) (+13.8) (-0.6) (-1.6) (+11.1)

R-Prec .3298† .3300† .3146 .3010 .3060 .3088 .3581*† .3084 .3111 .3418†
∆%(tfisf) (+0.1) (-4.6) (-8.7) (-7.2) (-6.4) (+8.6) (-6.5) (-5.7) (+3.6)
∆%(LMB) (+4.8) (+4.9) (-4.3) (-2.7) (-1.8) (+13.8) (-2.0) (-1.1) (+8.6)

Table 3 P@10, MAP and R-Prec in the test collections (TREC 2003 & TREC2004). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. LMB are marked with †.

the language models. However, though this is not always significantly different from the
baselines.

As previously mentioned, this is perhaps to be expected because the proposed methods
are more likely to improve recall. Still, it is very encouraging to see that early precision
can also be increased if the smoothing parameters are appropriately set. Recall that we have
trained the parameters on a held out test collection, so the performance reported here is not
necessarily the best that could be obtained using improved parameter estimation methods.
For the remaining of this paper, the focus of the discussion will be on performance with
respect to the recall oriented measures, MAP and R-Prec, unless otherwise specified.

In terms of the type of smoothing, i.e. using surrounding sentences or documents, there
was no significant differences between the performance obtained with the different esti-
mates. Though, using the complete document was slightly better overall. The other notable
point is that the 3MM and 2S localized smoothing methods did not provide improvements
to performance. This suggests that the 2S-I smoothing method provides an advantage over
these other smoothing methods, which may not necessarily bebecause of the local informa-
tion used. We explore the reasons in the next subsection.

Impact of Sentence Importance: In this set of experiments we considered the influence
of the local context stemming from the importance of a sentence within a document. Table 4
reports the best settings in the training collections for the proposed LM methods with the
sentence importance component. The performance of each method is shown in Table 5 while
Figures 1, 2 and 3 provide a bar graph of the P@10, MAP and R-Prec of each method with
and withoutp(d|s). It is clear from these results that the inclusion of the sentence importance
results in significantly better retrieval performance for all the LMs over the state of the art
method (tfisf). It appears that the impact of the sentence importance dominates the localized
smoothing. For instance, given the query “Chinese earthquake”, the 3MM with sentence
importance is able to retrieve the following relevant sentence within the top-10 sentences:
“Chinese architects from the Ministry of Construction and Hebei Province and the city of
Zhangjiakou have begun work on rebuilding earthquake-damaged parts of Hebei and have
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completed design work on ten types of residential housing for nine villages as models”.
Nevertheless, this sentence does not appear in the top-10 ofthe version of 3MM that does not
include sentence importance. This is because this sentencesummarizes well the document
and, therefore, thep(d|s) factor promotes it.

There are not significantly different levels of effectiveness between each of the different
smoothing methods. Observe also that the performance of 2S-I is not substantially affected
by the sentence importance factor.

P@10 MAP R-Prec

BM25 k1=1.2,b=0, k3=0 k1=1.4,b=0, k3=0 k1=1.0,b=0, k3=0

p(q|s,d)p(d|s) p(q|s,cs)p(d|s) p(q|s,d)p(d|s) p(q|s,cs)p(d|s) p(q|s,d)p(d|s) p(q|s,cs)p(d|s)

3MM λ=0.3,γ=0.3 λ=0.1,γ=0.1 λ=0.5,γ=0.1 λ=0.6,γ=0.3 λ=0.3,γ=0.2 λ=0.1,γ=0.2
2S λ=0.1,µ=1 λ=0.2,µ=1000 λ=0.1,µ=1 λ=0.1,µ=5 λ=0.4,µ=10 λ=0.8,µ=1
2S-I λ=0.1,µ=1 λ=0.2,µ=250 λ=0.1,µ=10 λ=0.4,µ=1 λ=0.1,µ=100 λ=0.1,µ=10
DIR µ=250 µ=1 µ=25
JM λ=0.9 λ=0.1 λ=0.5

Table 4 Optimal parameter settings in the training collection (TREC 2002) for LMs withp(d|s).

p(q|s)p(d|s) p(q|s,d)p(d|s) p(q|s,cs)p(d|s)
Context Sentence Only Document Surrounding Sents.

tfisf BM25 DIR JM 3MM 2S 2S-I 3MM 2S 2S-I
TREC 2003

P@10 .7480† .7540† .7280 .7320 .7220 .7440 .7360 .7260 .7340 .7280
∆%(tfisf) (+0.8) (-2.7) (-2.1) (-3.5) (-0.5) (-1.6) (-2.9) (-1.9) (-2.7)
∆%(LMB) (+7.5) (+8.3) (+4.6) (+5.2) (+3.7) (+6.9) (+5.7) (+4.3) (+5.5) (+4.6)

MAP .3851† .3852† .4144*† .4137*† .4104*† .4117*† .4108*† .4129*† .4132*† .4132*†
∆%(tfisf) (+0.0) (+7.6) (+7.4) (+6.6) (+6.9) (+6.7) (+7.2) (+7.3) (+7.3)
∆%(LMB) (+5.9) (+5.9) (+13.9) (+13.7) (+12.8) (+13.2) (+12.9) (+13.5) (+13.6) (+13.6)

R-Prec .4581† .4580† .4802*† .4800*† .4802*† .4800*† .4789*† .4796*† .4789*† .4798*†
∆%(tfisf) (-0.0) (+4.8) (+4.8) (+4.8) (+4.8) (+4.5) (+4.7) (+4.5) (+4.7)
∆%(LMB) (+2.8) (+2.8) (+7.7) (+7.7) (+7.7) (+7.7) (+7.4) (+7.6) (+7.4) (+7.7)

TREC 2004
P@10 .4300 .4380 .4380 .4420 .4400 .4420 .4380 .4400 .4380 .4380

∆%(tfisf) (+1.9) (+1.9) (+2.8) (+2.3) (+2.8) (+1.9) (+2.3) (+1.9) (+1.9)
∆%(LMB) (+2.4) (+4.3) (+4.3) (+5.2) (+4.8) (+5.2) (+4.3) (+4.8) (+4.3) (+4.3)

MAP .2358† .2368*† .2549*† .2548*† .2527*† .2538*† .2529*† .2550*† .2550*† .2553*†
∆%(tfisf) (+0.4) (+8.1) (+8.1) (+7.2) (+7.6) (+7.3) (+8.1) (+8.1) (+8.3)
∆%(LMB) (+5.3) (+5.7) (+13.8) (+13.8) (+12.8) (+13.3) (+12.9) (+13.8) (+13.8) (+14.0)

R-Prec .3298† .3300† .3522*† .3520*† .3504*† .3513*† .3508*† .3510*† .3520*† .3523*†
∆%(tfisf) (+0.1) (+6.8) (+6.7) (+6.3) (+6.5) (+6.4) (+6.4) (+6.7) (+6.8)
∆%(LMB) (+4.8) (+4.9) (+12.0) (+11.9) (+11.4) (+11.7) (+11.5) (+11.6) (+11.9) (+12.0)

Table 5 P@10, MAP and R-Prec in the test collections (TREC 2003 & TREC2004). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. standard DIR (LMB) are marked with †.

All the models that includep(d|s) are novel, as previous proposals using LMs are solely
based on query likelihood estimations. Note also that the three mixture model as proposed in
[18] (i.e. withoutp(d|s)) performs worse than the strong and weak baselines (resultsshown
in the 5th column of Table 3).

Incorporating context into the baselines:The baseline models (tfisf and BM25) are
context-unaware w.r.t. the local context. Given the findings we have obtained from incorpo-
rating local context in the LM framework, it is natural to wonder whether introducing the
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Fig. 1 P@10 in the test collections (TREC 2003 & TREC 2004) of the LMswith and without sentence
importance.

local context into the baselines can also improve their performance. First, we present several
straight forward adaptions of BM25 and tfisf to include localcontext, then we compare these
variations under the same experimental conditions as above.

A natural solution to introduce document statistics into BM25 [25] is to use the ex-
tended version of this model to handle multiple weighted fields, i.e. BM25f [21]. BM25f
estimates the relevance of documents considering a document as a set of components. Each
of these components may be assigned a specific weight within the document. For our case,
a sentence (s) can be considered as an aggregate of the sentence itself andthe context con-
taining the sentence (i.e. the document or the surrounding sentences provide local context to
the sentence). Given these two components, the BM25f model can be instantiated as follows:

simBM25f)(s,q) = ∑
t∈q∩s

log
N−s f(t)+0.5

s f(t)+0.5
·

weight(t,s)
k1 +weight(t,s)

·
(k3 +1)c(t,q)

k3 +c(t,q)
(14)
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Fig. 2 MAP in the test collections (TREC 2003 & TREC 2004) of the LMs with and without sentence
importance.

weight(t,s) =
c(t,s) ·α

(1−bsen)+bsen
c(s)
avsl

+
c(t,context) · (1−α)

(1−bcontext)+bcontext
c(context)

avcl

wherebsent andbcontext are normalizing constants associated to the field length ins and its
context, respectively;α is a boost factor that controls the term frequency mixture between
context statistics and sentence statistics;c(context) (c(s)) is the number of terms in context
(s), c(t,context) is eitherc(t,d) or c(t,cs) (depending on whether we apply document-level
or surrounding sentences context), andavcl (avsl) is the average context (sentence) length
in the collection. To reduce the number of parameters to be tuned,bcontextwas fixed to 0.75
(the value usually recommended for document length normalization in BM25 [20]),k1 was
set to the optimal value found with BM25 (Table 2) andk3 was set again to 0. The remaining
parameters,α andbsen, were tuned in the training collection (ranging from 0 to 1 insteps of
0.1).
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Fig. 3 R-Prec in the test collections (TREC 2003 & TREC 2004) of the LMs with and without sentence
importance.

Regarding tfisf, no extensions have been defined to handle local context and, therefore,
we defined ad-hoc adjustments to mix context statistics withsentence statistics. We tested
the following variants of tfisf:

a) tfmix: c(t,s) is replaced byα c(t,s)+(1−α)c(t,context);
b) idfdoc:s f(t) is replaced byd f(t) (i.e. idf is computed at the document level rather than

at sentence level);
c) tfmix+idfdoc: where both a) and b) were applied.

At training time, onlyα needs to be tuned (between 0 and 1 in steps of 0.1). Again, TREC
2002 was the training collection and TREC 2003 and TREC 2004 were the test collections.
The optimal performance was reached withbsen= 0 andα = 1 (BM25f), andα = 1 (tfisf).
This means that these models obtain best performance, when the local context is largely
ignored! Tables 6 and 7 report the results achieved in the test collections. Not surprisingly,
the variations perform virtually the same as the original models. As a matter of fact, BM25f
with α = 1 (considering either the surrounding sentences or the document as a local context)
yields the same SR strategy as BM25. The same happens for tfisf+tfmix (α = 1) with respect
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BM25 BM25f
BM25f(d) BM25f(cs)

bsen= 0, α = 1 bsen= 0, α = 1
TREC 2003

P@10 .7540 .7540 .7540
∆% (+0.0) (+0.0)

MAP .3852 .3852 .3852
∆% (+0.0) (+0.0)

R-Prec .4580 .4580 .4580
∆% (+0.0) (+0.0)

TREC 2004
P@10 .4380 .4380 .4380

∆% (+0.0) (+0.0)
MAP .2368 .2368 .2368

∆% (+0.0) (+0.0)
R-Prec .3300 .3300 .3300

∆% (+0.0) (+0.0)

Table 6 Performance of the BM25 and its variations (BM25f) to include context in the test collections (TREC
2003 & TREC 2004).

tfisf idfdoc tfmix tfmix+idfdoc

tfmix( d) tfmix( cs) tfmix+idfdoc( d) tfmix+idfdoc( cs)
α = 1 α = 0.6 α = 1 α = 0.6

TREC 2003
P@10 .7480 .7540 .7480 .7380 .7540 .7480

∆% (+0.8) (+0.0) (-1.3) (+0.8) (+0.0)
MAP .3851 .3906* .3851 .3843 .3906 .3843

∆% (+1.4) (+0.0) (-0.2) (+1.4) (-0.2)
R-Prec .4581 .4613 .4581 .4565 .4613 .4592

∆% (+0.7) (+0.0) (-0.3) (+0.7) (+0.2)
TREC 2004

P@10 .4300 .4360 .4300 .4240 .4360 .4360
∆% (+1.4) (+0.0) (-1.4) (+1.4) (+1.4)

MAP .2358 .2363 .2358 .2359 .2363 .2375
∆% (+0.2) (+0.0) (+0.0) (+0.2) (+0.7)

R-Prec .3298 .3288 .3298 .3308 .3288 .3270
∆% (-0.3) (+0.0) (+0.3) (-0.3) (-0.8)

Table 7 Performance of tfisf its variations to include context in thetest collections (TREC 2003 & TREC
2004).

to tfisf when the document is considered as the local context.Nevertheless, tfisf+tfmix con-
sidering the surrounding sentences (α = 0.6) performs worse than tfisf in TREC 2003 and
the same as tfisf in TREC 2004. With idfdoc there are some slight variations in performance
with respect to the baseline but they are insignificant8.

While it appears that local context can be useful the model inwhich it is incorporated
determines how successfully this evidence can be used. In the Language Modeling approach,
the framework provides a natural and intuitive manner to encode and incorporate the local
context through the smoothing process. However, it is unclear how to effectively incorporate
the evidence within these other models. We leave this direction for future work, and study
more precisely why and how the Language Models are able to capitalize on this additional
evidence.

8 We also tried other values ofα on the test collections - and can confirm that whenα = 1 andα = 0.6 the
best performance was obtained when the document or the surrounding sentences are considered, respectively.
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4.3 Analysis

In this section, we conduct a detailed analysis to understand precisely the reasons behind
the differences in effectiveness of the LMs designed. To explain the improvements in per-
formance brought about by the 2S-I model when no sentence importance is used, we derived
the retrieval formulas associated to these LMs (similar to that performed in [31,15]). The
retrieval formulas in sum-log form are shown in Table 8. Examining the models in this way
we can see the differences between each smoothing method. Itis interesting to pay attention
to the second addend in these formulas. This component incorporates usually some form
of length correction. In the DIR and 2S method, this component penalizes long sentences
and acts as a length normalization component (which is useful for document retrieval)9

[14]. In the JM and 3MM methods, this component is independent to the length of the
sentence. However, in the 2S-I method, this componentpromotes long sentencesbecause
a highc(s) means thatβ is low making that, overall, the sum is greater (because, usually,
p(t|d) >> p(t)).

Model Retrieval formula

DIR ∑
t∈s∩q

c(t,q) log

(

1+
c(t,s)
µ p(t)

)

+c(q) log
µ

c(s)+ µ

JM ∑
t∈s∩q

c(t,q) log

(

1+
(1−λ )

λ
·

c(t,s)
c(s) · p(t)

)

+c(q) · logλ

3MM
∑

t∈s∩q
c(t,q) log

λ p(t|s)+ γ p(t|d)+(1−λ − γ)p(t)
γ p(t|d)+(1−λ − γ)p(t)

+∑
t∈q

c(t,q) log(γ p(t|d)+(1−λ − γ)p(t))

2S
∑

t∈s∩q
c(t,q) log

(1−λ ) c(t,s)+µ p(t|d)
c(s)+µ +λ p(t)

(1−λ ) µ p(t|d)
c(s)+µ +λ p(t)

+∑
t∈q

c(t,q) log((1−λ )
µ p(t|d)

c(s)+ µ
+λ p(t))

2S-I

∑
t∈s∩q

c(t,q) log
(1−β )((1−λ )p(t|s)+λ p(t|d))+β p(t)

(1−β )λ p(t|d)+β p(t)

+∑
t∈q

c(t,q) log((1−β )λ p(t|d)+β p(t))

(β = µ/(c(s)+ µ))

Table 8 Sum-log retrieval formulas for the SR models based on LMs (without p(d|s)).

9 Note that since older retrieval models such as tf and tf-idf [25] using a vector space model overly favored
longer documents, a length correction was required, which penalized longer documents. However, in sentence
retrieval it would appear this is not appropriate.
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Fig. 4 Effect of non-matching component (length correction) in DIR, 2S and 2S-I against sentence length.
The plots show that the score assigned to sentences are adjusted proportionally to the length of the sentence.
Note that the 2S-I method favors longer sentences, while theother methods penalize longer sentences.

To illustrate this point further, the Figure 4 shows the behavior of the length correction
that the DIR, 2S and 2S-I methods produce with respect to the sentence length. Such correc-
tion is given by the second addend of expressions in Table 8. In this example, a queryq with
three terms (qA,qB,qC) is used, wherec(qA,q) = c(qB,q) = c(qC,q) = 1, p(qA) = 10−6,
p(qB) = 10−12, p(qC) = 10−3, p(qA|d) = p(qB|d) = p(qC|d) = 10−2, λ = 0.5, µ = 100.
Then the sentence lengths was varied from 1 to 50 (in steps of 1). Note that in DIR and 2S
the correction factor decreases with sentence length, while in 2S-I the value of this factor in-
creases with sentence length. This illustrates graphically that DIR and 2S methods are likely
to promote short sentences, while the 2S-I method is likely to promote long sentences.

This seems to indicate that promoting long sentences is a wayto achieve better perfor-
mance, as opposed to using more information. Observe also that the best parameter setting
in BM25 fixesb to 0 (Table 2), meaning that sentences are not penalized because of their
length. To further support this claim, we analyzed the average length of sentences in these
collections and compared it to the average length of relevant sentences. The average sentence
length is around 9 terms in all collections, while the average length of relevant sentences is
around 14 terms. Furthermore, we analyzed the top 100 sentences retrieved by every model
and found that 2S-I yields an average length of 13.71 and 13.66 (TREC 2003 & TREC
2004, respectively), while the other models retrieve shorter sentences on average (e.g. 3MM
retrieves sentences whose average length is 12.68 and 12.67, respectively). These statistics
suggest that 2S-I is superior to the other models because it promotes longer sentences, and
this is required to achieve better performance for the task of sentence retrieval.

Further to this analysis, it is interesting to note that in the estimation ofp(d|s) longer
sentences will also attract a higher probability. As a matter of fact, in Table 9 and Figure 5
we compare the performance of DIR and JM methods and a variantof them consisting of
incorporating a sentence length prior. We show that this variant outperforms significantly
their corresponding original versions. However, it does not outperform the 2S-I model and,
therefore, the sentence length is not the only component that makes the 2S-I model effective.

Observe thatp(d|s), as estimated in section 3.3, is a factor that favors long sentences
(because, for the vast majority of the terms in a sentence,p(t|d) >> p(t)10). This explains
why 2S-I does not receive any significant benefits fromp(d|s) (as 2S-I already retrieves
many long sentences) while the other LM techniques receive significant increases. As a
matter of fact, analyzing the top 100 sentences retrieved byevery method withp(d|s), we
found that the average lengths are quite uniform across models (around 20 terms). This
analysis suggests that the local context used indirectly promotes longer sentences, which
results in improved retrieval effectiveness.

10 Recall thatp(·|d) andp(·) are both maximum likelihood estimators.
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p(q|s) p(q|s)p(s)

DIR JM DIR+len JM+len
TREC 2003

P@10 .6960 .5600 .7500* .6120*
(µ = 100) (λ = 0.1) (µ = 250) (λ = 0.8)

MAP .3638 .3474 3998* 3730*
(µ = 500) (λ = 0.1) (µ = 50) (λ = 0.3)

R-Prec .4457 .4406 4663* 4588*
(µ = 250) (λ = 0.9) (µ = 50) (λ = 0.3)

TREC 2004
P@10 .4200 .3580 .4960* .3740

(µ = 100) (λ = 0.1) (µ = 250) (λ = 0.8)
MAP .2240 .2131 2517* 2298*

(µ = 500) (λ = 0.1) (µ = 50) (λ = 0.3)
R-Prec .3146 .3010 3476* 3287*

(µ = 250) (λ = 0.9) (µ = 50) (λ = 0.3)

Table 9 Comparative between DIR and JM against their variants with the sentence length prior (trained with
TREC 2002 and tested with TREC 2003 and TREC 2004).

Summary and Discussion: To sum up, the importance of sentences within documents,
p(d|s), makes that the performance of the LMs improve significantlybeyond existing state
of the art. When ignoringp(d|s), 2S-I is the only approach that handles well the retrieval of
long sentences with document-level smoothing.

It is quite remarkable that any LM method withp(d|s) is superior to the baselines.
This suggests that retrieval methods such as tfisf and BM25 are limited because they are
simple adaptations of document retrieval techniques and, therefore, they involve some sort
of correction to avoid retrieving many long texts (e.g.b in BM25) but they do not have
the opposite tool: some correction to retrieve more long texts. Standard models without
length normalization (tfisf or BM25 settingb to 0) have already some tendency towards long
pieces of text (because long sentences match more terms) but, given our findings, this is not
sufficient to improve the model’s performance. However, this also opens the door to future
developments, or extensions of current SR models to try to account for this tendency. This
will also help to understand whether the important benefits reported here come exclusively
from promoting long sentences or, on the contrary, it is the combination of retrieving long
sentences and localized smoothing the reason behind such good performance.

5 Conclusions and Future Work

In this paper, we proposed several novel probabilistic LMs to address the SR problem by
including the local context. The context provided by the document meant that the estimate
of relevance was based on the sentence, the document and the query. As part of the sen-
tence language model, localized smoothing was included to provide a better estimate of the
probability of a term in a sentence. The importance of sentences within the document was
also included in our models. In a comprehensive set of experiments performed over several
TREC test collections, we have compared the proposed modelsagainst existing SR models.
Our experiments showed that using both forms of local context significantly outperforms
the standard LM approach applied to sentence retrieval and the current state of the art sen-
tence retrieval models. This is an important advancement inthe development of effective SR
methods. More specifically, it was found that:
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Fig. 5 Comparative between DIR and JM against their variants considering a sentence length prior (trained
with TREC 2002 and tested with TREC 2003 and TREC 2004).

– Using localized smoothing (2S-I) improves the performanceof the LMs methods (by up
to 13.8% improvement in mean average precision (MAP)).

– Including sentence importance significantly improves the performance of all the LM
approaches.

– LMs that use local context significantly outperform the current state of the art.

It was also shown that the improvements in the proposed methods were partly due to their
tendency to favor longer sentences. This finding demonstrates that the naive application of
document retrieval models to other retrieval tasks can leadto non-optimal performance;
and warrants the development of sentence retrieval methodswhich account for the length
normalization problem. These findings suggest that furtherprogress in the area of sentence
retrieval is possible, and that more sophisticated, and more effective models can be devel-
oped by incorporating the local context within the LM framework. This work motivates
future research and development on:
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(i) developing other methods in a principled fashion to alsoinclude local context, i.e. chang-
ing the vector representation in tfisf, including a sentenceimportance factor, or including
the local context in the classic Probabilistic Model for IR,

(ii) instead of considering the closest surrounding sentences (previous and next), consider a
variable number of surrounding sentences,

(iii) define a four-mixture model that combines the sentence, the local context, the document
and the background model,

(iv) the modification of pivoted length normalization, [25]or BM25 to do SR promoting long
sentences; or sentence priors for LMs to investigate the length normalization issues,

(v) other estimation methods of the LMs and priors, along with automatic parameter esti-
mation techniques, and

(vi) the application and extension of the Language ModelingFramework to other tasks, such
as query-biased summarization or novelty detection.
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A Appendix

A.1 Localized Smoothing

A.1.1 Training with TREC 2003

P@10 MAP R-Prec

BM25 k1=1.1,b=0, k3=0 k1=1.4,b=0, k3=0 k1=1.1,b=0, k3=0

p(q|s,d) p(q|s,cs) p(q|s,d) p(q|s,cs) p(q|s,d) p(q|s,cs)

3MM λ=0.9,γ=0.1 λ=0.9,γ=0.1 λ=0.9,γ=0.1 λ=0.9,γ=0.1 λ=0.9,γ=0.1 λ=0.8,γ=0.1
2S λ=0.4,µ=50 λ=0.2,µ=1 λ=0.6,µ=100 λ=0.1,µ=1 λ=0.9,µ=5000 λ=0.5,µ=1
2S-I λ=0.3,µ=250 λ=0.3,µ=500 λ=0.8,µ=500 λ=0.9,µ=1000 λ=0.8,µ=1000 λ=0.4,µ=500
DIR µ=2500 µ=500 µ=100
JM λ=0.1 λ=0.1 λ=0.1

Table 10 Optimal parameter settings in the training collection (TREC 2003) for BM25 and LMs without
p(d|s).

p(q|s) p(q|s,d) p(q|s,cs)
Context n/a Document Surrounding Sents.

tfisf BM25 DIR JM 3MM 2S 2S-I 3MM 2S 2S-I
(LMB)

TREC 2002
P@10 .2041 .2041† .1612 .1163 .1122 .1265 .1918† .1245 .1265 .1755

∆%(tfisf) (+0.0) (-21.0) (-43.0) (-45.0) (-38.0) (-6.0) (-39.0) (-38.0) (-14.0)
∆%(LMB) (+26.6) (+26.6) (-27.9) (-30.4) (-21.5) (+19.0) (-22.8) (-21.5) (+8.9)

MAP .1094† .1102† .0937 .0861 .0849 .0938 .1218*† .0837 .0916 .1095†
∆%(tfisf) (+0.7) (-14.4) (.21.3) (-22.4) (-14.3) (+11.3) (-23.5) (-16.3) (+0.1)
∆%(LMB) (+16.8) (+17.6) (-8.1) (-9.4) (+0.1) (+30.0) (-10.7) (-2.2) (+16.9)

R-Prec .1659† .1677† .1390 .1252 .1385 .1512 .1841† .1367 .1332 .1670†
∆%(tfisf) (+1.1) (-16.2) (-24.5) (-16.5) (-8.9) (+11.0) (-17.6) (-19.7) (+0.7)
∆%(LMB) (+19.4) (+20.6) (-9.9) (-0.4) (+8.8) (+32.4) (-1.7) (-4.2) (+20.1)

TREC 2004
P@10 .4300 .4380 .4020 .3580 .3560 .3220 .4660*† .3260 .3420 .4760*†

∆%(tfisf) (+1.9) (-6.5) (-16.7) (-17.2) (-25.1) (+8.4) (-24.2) (-20.5) (+10.7)
∆%(LMB) (+7.0) (+9.0) (-10.9) (-11.4) (-19.9) (+15.9) (-18.9) (-14.9) (+18.4)

MAP .2358† .2368*† .2240 .2131 .2199 .2204 .2607*† .2124 .2204 .2496*†
∆%(tfisf) (+0.4) (-5.0) (-9.6) (-6.7) (-6.5) (+10.6) (-9.9) (-6.5) (+5.9)
∆%(LMB) (+5.3) (+5.7) (-4.9) (-1.8) (-1.6) (+16.4) (-5.2) (-1.6) (+11.4)

R-Prec .3298† .3300† .3129 .3047 .3105 .3084 .3552*† .3174 .3109 .3386†
∆%(tfisf) (+0.1) (-5.1) (-7.6) (-5.9) (-6.5) (+7.7) (-3.8) (-5.7) (+2.7)
∆%(LMB) (+5.4) (+5.5) (-2.6) (-0.8) (-1.4) (+13.5) (+1.4) (-0.6) (+8.2)

Table 11 P@10, MAP and R-Prec in the test collections (TREC 2002 & TREC2004). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. LMB are marked with †.
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A.1.2 Training with TREC 2004

P@10 MAP R-Prec

BM25 k1=1.0,b=0, k3=0 k1=1.0,b=0, k3=0 k1=1.0,b=0, k3=0

p(q|s,d) p(q|s,cs) p(q|s,d) p(q|s,cs) p(q|s,d) p(q|s,cs)

3MM λ=0.8,γ=0.1 λ=0.8,γ=0.1 λ=0.9,γ=0.1 λ=0.8,γ=0.1 λ=0.7,γ=0.1 λ=0.7,γ=0.1
2S λ=0.8,µ=10000 λ=0.2,µ=1 λ=0.1,µ=250 λ=0.1,µ=1 λ=0.7,µ=100 λ=0.8,µ=500
2S-I λ=0.6,µ=250 λ=0.4,µ=500 λ=0.8,µ=100 λ=0.7,µ=500 λ=0.7,µ=100 λ=0.8,µ=500
DIR µ=250 µ=500 µ=5000
JM λ=0.1 λ=0.1 λ=0.1

Table 12 Optimal parameter settings in the training collection (TREC 2004) for BM25 and LMs without
p(d|s).

p(q|s) p(q|s,d) p(q|s,cs)
Context n/a Document Surrounding Sents.

tfisf BM25 DIR JM 3MM 2S 2S-I 3MM 2S 2S-I
(LMB)

TREC 2002
P@10 .2041 .2041† .1633 .1163 .1061 .1531 .2245† .1286 .1265 .1837

∆%(tfisf) (+0.0) (-20.0) (-43.0) (-48.0) (-25.0) (+10.0) (-37.0) (-38.0) (-10.0)
∆%(LMB) (+25.0) (+25.0) (-28.8) (-35.0) (-6.2) (+37.5) (-21.2) (-22.5) (+12.5)

MAP .1094† .1102† .0937 .0861 .0849 .0917 .1200† .0919 .0916 .1096†
∆%(tfisf) (+0.7) (-14.4) (-21.3) (-22.4) (-16.2) (+9.7) (-16.0) (-16.3) (+0.2)
∆%(LMB) (+16.8) (+17.6) (-8.1) (-9.4) (-2.1) (+28.1) (-1.9) (-2.2) (+17.0)

R-Prec .1659† .1677† .1406 .1252 .1296 .1448 .1780† .1367 .1362 .1682†
∆%(tfisf) (+1.1) (-15.3) (-24.5) (-21.9) (-12.7) (+7.3) (-17.6) (-17.9) (+1.4)
∆%(LMB) (+18.0) (+19.3) (-11.0) (-7.8) (+3.0) (+26.6) (-2.8) (-3.1) (+19.6)

TREC 2003
P@10 .7480 .7520† .7140 .5600 .5480 .5800 .7400 .5400 .5320 .7540†

∆%(tfisf) (+0.5) (-4.5) (-25.1) (-26.7) (-22.5) (-1.1) (-27.8) (-28.9) (+0.8)
∆%(LMB) (+4.8) (+5.3) (-21.6) (-23.2) (-18.8) (+3.6) (-24.4) (-25.5) (+5.6)

MAP .3851† .3846† .3638 .3474 .3555 .3503 .4098*† .3532 .3494 .3900†
∆%(tfisf) (-0.1) (-5.5) (-9.8) (-7.7) (-9.0) (+6.4) (-8.3) (-9.3) (+1.3)
∆%(LMB) (+5.9) (+5.7) (-4.5) (-2.3) (-3.7) (+12.6) (-2.9) (-4.0) (+7.2)

R-Prec .4581† .4580† .4453 .4416 .4487 .4424 .4744*† .4489 .4457 .4611†
∆%(tfisf) (-0.0) (-2.8) (-3.6) (-2.1) (-3.4) (+3.6) (-2.0) (-2.7) (+0.7)
∆%(LMB) (+2.9) (2.9) (-0.8) (+0.8) (-0.7) (+6.5) (+0.8) (+0.1) (+3.5)

Table 13 P@10, MAP and R-Prec in the test collections (TREC 2002 & TREC2003). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. LMB are marked with †.
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A.2 Sentence Importance

A.2.1 Training with TREC 2003

P@10 MAP R-Prec

BM25 k1=1.1,b=0, k3=0 k1=1.4,b=0, k3=0 k1=1.1,b=0, k3=0

p(q|s,d) p(q|s,cs) p(q|s,d) p(q|s,cs) p(q|s,d) p(q|s,cs)

3MM λ=0.6,γ=0.1 λ=0.7,γ=0.1 λ=0.8,γ=0.1 λ=0.8,γ=0.1 λ=0.1,γ=0.8 λ=0.8,γ=0.1
2S λ=0.1,µ=1 λ=0.1,µ=1 λ=0.1,µ=1 λ=0.1,µ=1 λ=0.1,µ=250 λ=0.2,µ=1
2S-I λ=0.1,µ=10 λ=0.1,µ=5 λ=0.1,µ=1 λ=0.1,µ=1 λ=0.8,µ=1 λ=0.7,µ=5
DIR µ=1 µ=1 µ=10
JM λ=0.1 λ=0.1 λ=0.4

Table 14 Optimal parameter settings in the training collection (TREC 2003) for LMs withp(d|s).

p(q|s)p(d|s) p(q|s,d)p(d|s) p(q|s,cs)p(d|s)
Context Sentence Only Document Surrounding Sents.

tfisf BM25 DIR JM 3MM 2S 2S-I 3MM 2S 2S-I
TREC 2002

P@10 .2041† .2041† .2429† .2449† .2429† .2469† .2429† .2449† .2449† .2449†
∆%(tfisf) (+0.0) (+19.0) (+20.0) (+19.0) (+21.0) (+19.0) (+20.0) (+20.0) (+20.0)
∆%(LMB) (+26.6) (+26.6) (+50.7) (+51.9) (+50.7) (+53.2) (+50.7) (+51.9) (+51.9) (+51.9)

MAP .1094† .1102† .1349*† .1347*† .1333*† .1344*† .1329*† .1342*† .1343*† .1347*†
∆%(tfisf) (+0.7) (+23.3) (+23.1) (+21.8) (+22.9) (+21.5) (+22.7) (+22.8) (+23.1)
∆%(LMB) (+16.8) (+17.6) (+44.0) (+43.8) (+42.3) (+43.4) (+41.8) (+43.2) (+43.3) (+43.8)

R-Pre .1659† .1677† .2051*† .2046*† .1947† .1934† .1943† .2031*† .2033*† .2037*†
∆%(tfisf) (+1.1) (+23.6) (+23.3) (+17.4) (+16.6) (+17.1) (+22.4) (+22.5) (+22.8)
∆%(LMB) (+19.4) (+20.6) (+47.6) (+47.2) (+40.1) (+39.1) (+39.8) (+46.1) (+46.3) (+46.5)

TREC 2004
P@10 .4300 .4380 .4420 .4480 .4400 .4420 .4360 .4460 .4400 .4440

∆%(tfisf) (+1.9) (+2.8) (+4.2) (+2.3) (+2.8) (+1.4) (+3.7) (+2.3) (+3.3)
∆%(LMB) (+7.0) (+9.0) (+10.0) (+11.4) (+9.5) (+10.0) (+8.5) (+10.9) (+9.5) (+10.4)

MAP .2358† .2368*† .2549*† .2548*† .2531*† .2538*† .2532*† .2550*† .2551*† .2553*†
∆%(tfisf) (+0.4) (+8.1) (+8.1) (+7.3) (+7.6) (+7.4) (+8.1) (+8.2) (+8.3)
∆%(LMB) (+5.3) (+5.7) (+13.8) (+13.8) (+13.0) (+13.3) (+13.0) (+13.8) (+13.9) (+14.0)

R-Prec .3298† .3300† .3538*† .3527*† .3495† .3494† .3496† .3545*† .3536*† .3538*†
∆%(tfisf) (+0.1) (+7.3) (+6.9) (+6.0) (+5.9) (+6.0) (+7.5) (+7.2) (+7.3)
∆%(LMB) (+5.4) (+5.5) (+13.1) (+12.7) (+11.7) (+11.7) (+11.7) (+13.3) (+13.0) (+13.1)

Table 15 P@10, MAP and R-Prec in the test collections (TREC 2002 & TREC2004). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. standard DIR (LMB) are marked with †.
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A.2.2 Training with TREC 2004

P@10 MAP R-Prec

BM25 k1=1.0,b=0, k3=0 k1=1.0,b=0, k3=0 k1=1.0,b=0, k3=0

p(q|s,d) p(q|s,cs) p(q|s,d) p(q|s,cs) p(q|s,d) p(q|s,cs)

3MM λ=0.9,γ=0.1 λ=0.4,γ=0.4 λ=0.8,γ=0.1 λ=0.4,γ=0.5 λ=0.6,γ=0.1 λ=0.4,γ=0.5
2S λ=0.1,µ=1 λ=0.2,µ=25 λ=0.1,µ=1 λ=0.1,µ=1 λ=0.2,µ=1 λ=0.1,µ=25
2S-I λ=0.2,µ=5 λ=0.3,µ=5 λ=0.1,µ=1 λ=0.1,µ=1 λ=0.4,µ=50 λ=0.4,µ=1
DIR µ=5 µ=1 µ=1
JM λ=0.1 λ=0.1 λ=0.1

Table 16 Optimal parameter settings in the training collection (TREC 2004) for LMs withp(d|s).

p(q|s)p(d|s) p(q|s,d)p(d|s) p(q|s,cs)p(d|s)
Context Sentence Only Document Surrounding Sents.

tfisf BM25 DIR JM 3MM 2S 2S-I 3MM 2S 2S-I
TREC 2002

P@10 .2041† .2041† .2449† .2449† .1796 .2469† .2469† .2449† .2449† .2449†
∆%(tfisf) (+0.0) (+20.0) (+20.0) (-12.0) (+21.0) (+21.0) (+20.0) (+20.0) (+20.0)
∆%(LMB) (+25.0) (+25.0) (+50.0) (+50.0) (+10.0) (+51.2) (+51.2) (+50.0) (+50.0) (+50.0)

MAP .1094† .1102† .1349*† .1347*† .1333*† .1344*† .1329*† .1344*† .1343*† .1347*†
∆%(tfisf) (+0.7) (+23.3) (+23.1) (+21.8) (+22.9) (+21.5) (+22.9) (+22.8) (+23.1)
∆%(LMB) (+16.8) (+17.6) (+44.0) (+43.8) (+42.3) (+43.4) (+41.8) (+43.4) (+43.3) (+43.8)

R-Prec .1659† .1677† .2041*† .2041*† .2018*† .2022*† .2007*† .2033*† .2033*† .2032*†
∆%(tfisf) (+1.1) (+23.0) (+23.0) (+21.6) (+21.9) (+21.0) (+22.5) (+22.5) (+22.5)
∆%(LMB) (+18.0) (+19.3) (+45.2) (+45.2) (+43.5) (+43.8) (+42.7) (+44.6) (+44.6) (+44.5)

TREC 2003
P@10 .7480† .7520† .7500 .7480 .6960 .7440 .7360 .7360 .7360 .7420

∆%(tfisf) (+0.5) (+0.3) (+0.0) (-7.0) (-0.5) (-1.6) (-1.6) (-1.6) (-0.8)
∆%(LMB) (+4.8) (+5.3) (+5.0) (+4.8) (-2.5) (+4.2) (+3.1) (+3.1) (+3.1) (+3.9)

MAP .3851† .3846† .4144*† .4137*† .4111*† .4117*† .4113*† .4126*† .4135*† .4139*†
∆%(tfisf) (-0.1) (+7.6) (+7.4) (+6.8) (+6.9) (+6.8) (+7.1) (+7.4) (+7.5)
∆%(LMB) (+5.9) (+5.7) (+13.9) (+13.7) (+13.0) (+13.2) (+13.1) (+13.4) (+13.7) (+13.8)

R-Prec .4581† .4580† .4793*† .4797*† .4800*† .4805*† .4795*† .4791*† .4803*† .4800*†
∆%(tfisf) (-0.0) (+4.6) (+4.7) (+4.8) (+4.9) (+4.7) (+4.6) (+4.8) (+4.8)
∆%(LMB) (+2.9) (+2.9) (+7.6) (+7.7) (+7.8) (+7.9) (+7.7) (+7.6) (+7.9) (+7.8)

Table 17 P@10, MAP and R-Prec in the test collections (TREC 2003 & TREC2004). Statistically significant
differences w.r.t. tfisf are marked with * and w.r.t. standard DIR (LMB) are marked with †.


