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ABSTRACT
In this paper we describe our recent research on effective construc-
tion of Information Retrieval collections. Relevance assessments
are a core component of test collections, but they are expensive to
produce. For each test query, only a sample of documents in the
corpus can be assessed for relevance. We discuss here a class of
document adjudication methods that iteratively choose documents
based on reinforcement learning. Given a pool of candidate doc-
uments supplied by multiple retrieval systems, the production of
relevance assessments is modeled as a multi-armed bandit problem.
These bandit-based algorithms identify relevant documents with
minimal effort. One instance of these models has been adopted by
NIST to build the test collection of the TREC 2017 common core
track.
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1 INTRODUCTION
Evaluation is essential for advancing in search technologies. With
current document corpora, making deep assessments becomes in-
feasible. For each query, it is customary to extract a sample of
documents that become candidates for assessment. This is the so-
called pooling strategy [9]. Pooling, which has been adopted by
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most evaluation campaigns, consists of doing relevance judgments
only for those documents that are retrieved at top positions by
search systems participating in the creation of the collection. This
pool of candidate documents is still large and it is often the case
that we can only afford to judge a subset of the pool.

A number of strategies have been proposed to analyze the pool
and adjudicate documents for relevance assessment. These adjudi-
cation strategies follow different intuitions and attempt to create
robust qrels (query-relevance judgments) with minimal effort. A
recent study [6] compared multiple pooling-based and meta-search
strategies and found that some instances of multi-armed bandit
models lead to formal and extremely effective adjudication strate-
gies. These bandit-based models, which were originally proposed
in [5], are briefly reviewed in the next section.

2 RELEVANCE ASSESSMENTS BASED ON
MULTI-ARMED BANDITS

Under a pooling setting, we work with multiple retrieval systems
whose role is to rank documents by estimated relevance. For each
test query we start therefore with multiple rankings of documents
(runs) and, with the assistance of human judges, we need to produce
some relevance judgments. Initially, we have no knowledge on the
quality of the runs but, as judgments come in, we gain knowledge
about the relative effectiveness of the runs. This iterative assessment
process can naturally be modeled with reinforcement learning.

K-armed bandits [8], or multi-armed bandits, are classic rein-
forcement learning methods that model the balance between ex-
ploitation (e.g., next judgment extracted from the best run so far)
and exploration (e.g., next judgment from a suboptimal run). These
models fit well with a pooling-based construction of qrels, where
we need to trade between selecting the currently best system and
selecting another inferior system that can eventually become a
good supplier of relevant documents.

Robbins [8] defined the K-armed bandit problem as follows. A
gambler is faced with K bandits (or slot machines). Each bandit
has an unknown probability of giving a prize and, when played,
supplies a (numerical) reward. The gambler chooses one bandit
per round and attempts to maximize the overall reward. A key
component of bandit-based algorithms is the allocation strategy,
which is the element of these methods that decides which bandit
to play next. Such bandit selection depends on past rewards and
each allocation strategy follows a different approach to deal with
the exploration versus exploitation dilemma.
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Pooling-based document adjudication can be addressed as a K-
armed bandit problem where the runs are the bandits and playing
a bandit consists of judging the top (unjudged) document from
the run. In this way, if the top document supplied by the run is
relevant then the run gets a positive reward. Otherwise, it gets
a negative reward1. This outcome is used to update our counts
about the relative quality of the runs and, next, we can move on
to the next pick. In [5], we evaluated a number of well-known
bandit allocation strategies, including random selection, ϵn -greedy,
Upper Confidence Bound (UCB), and Bayesian Bandits (BB), and
compared themwith alternative pooling adjudicationmethods. This
comparison not only gave new insights about the relative merits
of existing methods, but also showed that some BB models are
superior to state-of-the-art solutions. The study included stationary
bandit models, which assume that the probabilities of the bandits do
not change and treat all rewards equally, and non-stationary bandit
models, where past and recent rewards can be assigned unequal
weights.

In [6], we further compared the most effective bandit-based
models with meta-search models, and expanded the study with a
bias analysis. By judging a subset of the pool, document allocation
methods induce a bias with respect to judging the entire pool. This
bias is reduced as more documents are assessed. We thoroughly
studied the bias induced by different pooling allocation methods.
These experiments concluded that one simple instance of the BB
models requires fewer relevance assessments than any other com-
peting method and leads to a ranking of search systems that highly
correlates with the official rankings (i.e. it has low bias).

When the systems participating in the evaluation campaign
supply relevance scores (e.g. query-document similarity scores),
we can try to inject this evidence into the process of selection
of relevance judgments. This avenue of research was explored in
[7]. We proposed effective rank fusion methods that model the
distribution of retrieval scores supplied by the search systems. Our
evaluation showed that this theoretically-grounded approach is
competitive when compared to state of the art methods. Another
contribution of this study was that we successfully included pseudo-
relevance evidence into the estimation of the score distribution
models.

3 TREC 2017 COMMON CORE TRACK
In 2017, NIST faced the challenge of building a new test collection
for the traditional ad-hoc search task [1]. To meet this aim, the
organizers of the common core track decided to test new collec-
tion construction methodologies that avoid the disadvantages of
the classic depth-k pooling. Such classic strategy creates robust
collections but does so at a high cost. The main desiderata was to
construct a reusable test collection with minimal cost.

The organizers of this new TREC track considered the BB models
proposed in [5, 6], evaluated them (in terms of the relevant doc-
uments found and in terms of bias) and found that these models
are cost-effective and can rank runs much the same as the official
(full pool) qrels. Following this evaluation, which was consistent
with our previous studies, a specific instance of our BB models
was implemented in the NIST servers and used to iteratively select

1We worked with binary relevance and, thus, rewards were either 0 or 1.

documents for assessment (the server iteratively sent documents
to the human assessors and received their relevance assessment).
TREC is a world reference in search technology evaluation, and
having one of our models as a working piece of the TREC pipeline
is a really encouraging result of our research.

4 CONCLUSIONS
Relevance assessments are a bottleneck in the process of building
an Information Retrieval collection. In this paper, we have reviewed
recent studies that proposed cost-effective solutions for generating
query-relevance judgments. Effectively building test collections
is a need not only for well-known evaluation campaigns, such as
TREC [10], or NTCIR [3], but also for research teams or companies
that build their own testbeds, e.g. to evaluate vertical search or to
support experimentation in specific domains [2, 4].

Furthermore, selection methods for labeling items from a pool of
unlabeled items is of interest well beyond Information Retrieval. As
a matter of fact, unlabeled data is pervasive in many data mining
applications and it is crucial to have cost-effective ways to create
training data.
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