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ABSTRACT
Null Hypothesis Significance Testing (NHST) has been recurrently
employed as the reference framework to assess the difference in
performance between Information Retrieval (IR) systems. IR practi-
tioners customarily apply significance tests, such as the 𝑡-test, the
Wilcoxon Signed Rank test, the Permutation test, the Sign test or the
Bootstrap test. However, the question of which of these tests is the
most reliable in IR experimentation is still controversial. Different
authors have tried to shed light on this issue, but their conclusions
are not in agreement. In this paper, we present a new methodology
for assessing the behavior of significance tests in typical ranking
tasks. Our method creates models from the search systems and uses
those models to simulate different inputs to the significance tests.
With such an approach, we can control the experimental condi-
tions and run experiments with full knowledge about the truth or
falseness of the null hypothesis. Following our methodology, we
computed a series of simulations that estimate the proportion of
Type I and Type II errors made by different tests. Results conclu-
sively suggest that the Wilcoxon test is the most reliable test and,
thus, IR practitioners should adopt it as the reference tool to assess
differences between IR systems.
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1 INTRODUCTION
In this paper, we propose a fitting approach to model the pattern of
appearance of relevant documents in ranked sets of search results.
The resulting models can simulate the output of search systems
and, thus, they can support several meaningful tasks. We focus here
on introducing the learned models as useful devices for studying
tests of statistical significance.

Evaluation is essential to advance in building better Information
Retrieval (IR) algorithms. Search experiments produce performance
data, and significance tests are required to decide whether the ex-
periments show that there is a statistically meaningful difference
between retrieval methods. Significance tests pervade IR experimen-
tation, but there is still no agreement on which test IR practitioners
should apply.

Recent papers [11, 21] have manifested the limitations of query-
splitting and permutation-based studies for comparing significance
tests for IR. These studies have, however, either relied on the ex-
istence of Score Distribution models or worked with fits of effec-
tiveness scores whose quality is unknown (and these fits alter the
experimental conditions in a way that favors some test over the
others). Our innovative modeling approach permits us to compare
significance tests based on simulating how search systems retrieve
relevant documents in the rankings. The method does not require
retrieval scores, and we provide evidence on the validity of our
simulation of rankings.

Score Distributions (SDs) are useful devices in several tasks, but
the dependence on score distribution modeling is limiting. SD mod-
els depend on the availability of actual scores generated by systems
and previous studies that have employed SDs when simulating
search systems to evaluate significance tests, e.g., [11], could only
evaluate systems that provide retrieval scores. This is an important
limitation because many search systems (even in TREC) do not re-
veal document retrieval scores. Furthermore, as argued in [13], SD
models often make strong assumptions about the retrieval scores.
The work presented here complements recent work on evaluating
significance tests for IR experiments [11, 21]. Our approach does
not require SDs and can, therefore, be employed to run simula-
tions of any search system that provides a rank of documents by
decreasing estimated relevance. In this way, our comparison of
significance tests is more exhaustive than previous experiments
because it models a broader range of retrieval systems. Moreover,
our approach does not model the distribution of any effectiveness
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score and, thus, our simulation method is agnostic to the type of
distribution followed by the effectiveness metrics.

A core strength of our comparison is that, inspired by [11], we
assess significance tests under perfect knowledge about the truth
or falseness of the null hypothesis. Using simulated search systems,
we can produce two rankings for the same system-query pair (null
hypothesis true), or we can manipulate the parameters and produce
rankings from simulated models whose performance is increasingly
different (null hypothesis false). With such certainty on the source
of the rankings (same model producing two rankings vs. two differ-
ent models producing two rankings), we can accurately evaluate
the type I and type II errors made by the significance tests. This
robust evaluation mechanism, together with the ability to model
and simulate any search system (even those that do not reveal ac-
tual scores of documents), are the primary building blocks of our
framework to compare significance tests in IR.

The rest of the paper is organized as follows. Section 2 provides
the context for our experiments by reviewing appropriate literature.
The simulation approach is presented and validated in Section
3. The experiments performed to evaluate significance tests are
reported in Section 4, and conclusions are drawn in Section 5.

2 RELATEDWORK
Parapar and colleagues [11] recently published a novel proposal to
evaluate significance tests based on explicit knowledge about the
null hypothesis. This comparison is valuable, but it relies on the
existence of retrieval scores. The authors modeled IR systems using
Score Distributions [9] learned from TREC runs, produced simu-
lated search results from such models, and compared them using
various significance tests. The use of Score Distribution models lim-
its the simulation to those TREC systems that revealed document
scores. In this work, we investigate whether or not the relative mer-
its of the significance tests held in the absence of retrieval scores.
This type of study is essential because most retrieval experimenta-
tions (e.g., in TREC or CLEF) need to compare systems that do not
always supply retrieval scores.

A later study by Urbano and colleagues [21], also proposed a
simulation based on explicit knowledge about the null hypothesis
for evaluating significance tests. Their method does not model the
production of rankings but, instead, works from the individual ef-
fectiveness scores of a system over a set of queries (e.g., a sequence
of Average Precision –AP– values). This sequence of scores is used
to fit a distribution and, next, pseudo-observations are drawn and
fed to a copula-based method that models the dependence among
systems. A fundamental limitation of this approach is that the fits
are done with specific families of distributions1 and, as argued in
[22], the results “do not tell us ... themselves about the quality of
the fitted models”. If simulated models are fitted from pre-selected
classes of distributions, the comparison is biased towards signifi-
cance tests that follow certain parametric assumptions. For example,
the t-test profits from simulated data that follows normal-shaped
distributions (see discussion in Section 4.2, Figure 6). In summary,
such pre-selection of certain parametric distributions is an artifact

1Truncated Normal, Beta, Truncated Normal Kernel Smoothing, Beta Kernel Smooth-
ing, Beta-Binomial and Discrete Kernel Smoothing.

of the simulation proposed in [21], and the best fit for each com-
bination of measure and retrieval system might be still a poor fit.
Furthermore, such simulation approach is inherently tied to specific
performance measures, while the method proposed here produces
simulated rankings of relevant and non-relevant documents and
we can compute any performance metric from the resulting simu-
lations.

Besides these two recent studies, there are several papers in
the literature that compared and analyzed significance tests in IR.
Research works in this area are grouped into two main classes:
query-splitting and permutation-based. Studies in the first group
divide the available query set into two disjoint subsets and, subse-
quently, study the behavior of the significance tests over the two
query splits. Following this approach, Zobel [24] concluded that
the Wilcoxon test has more power and is more reliable than both
the t-test and ANOVA. In his study, a type I error was recorded
when a statistically significant difference between two systems was
observed in the first query split, and the ordering of the systems
was different in the second query split. Following a similar query-
splitting approach, Sanderson and Zobel [18] later suggested that
the t-test has lower error rates when compared to the sign test
and the Wilcoxon test, and Cormack and Lynam [7] found that the
t-test, Wilcoxon and the sign test have high power and are reliable.
Although these investigations provided valuable insights for IR
evaluation, their conclusions should be interpreted with care. The
query-splitting methodology works with arbitrary (and small) splits
of queries and lacks knowledge about the truth of the null hypoth-
esis. A given significance test might give consistent results over
two query splits, but this does not mean that the result of the test is
correct. The test might be consistently rejecting a null hypothesis
that is true or, conversely, it might be consistently accepting a null
hypothesis that is actually false. Note also that, for any significance
test, the smaller the sample size, the lower the power and, thus,
by applying query splitting we are setting a barrier that limits the
differences that can be detected by the tests.

Working with two-sample t-tests, Student’s and Welch’s, Sakai
[16] followed a query-splitting approach that had restricted knowl-
edge about the null hypothesis. Given a query set and the associated
retrieval results produced by some systems, the queries were ran-
domly split into two sets. For each system and evaluation metric, a
two-sided, two-sample test was run to assess whether or not the dif-
ference between the two means of the same system were significant.
Since the means came from the same system, this is a case where
the null hypothesis is assumed to be true. This approach works with
unpaired data and, thus, cannot be applied to compare significance
tests in standard retrieval experiments (where all rankers evalu-
ated with the same queries). This unpaired method is, however,
valuable in situations with two-samples, such as comparisons of
clickthrough data from two search engines.

The second class of comparisons of significance tests was founded
by Smucker and colleagues [20], who employed the permutation
test as the main reference to evaluate significance tests. More specif-
ically, a false alarm was recorded when a significance test marked
a difference as significant while the permutation test had labeled
the same case as non-significant. Following such analysis, they
suggested that the use of the Wilcoxon test and the sign test should
be discontinued because these two tests show a discordant behavior



when compared with the Bootstrap test, the t-test, and the permu-
tation test. However, such a conclusion was based on taking the
permutation’s decisions as the correct ones. The permutation test
computes good approximations to the actual p-values, but this does
not mean that its decisions on statistical significance should be
taken as golden truth labels. As a matter of fact, by design, the test
makes an 𝛼 proportion of type I errors. The experiments reported
in our paper also show that the Wilcoxon test and the sign test
are discordant with the other tests, but we demonstrate that this
outcome derives from the fact that both of them have more power
than the other tests compared. These results are in agreement with
those found in recent SD-based simulations of retrieval systems
[11].

3 BUILDING AND EVALUATING SIMULATED
SEARCH SYSTEMS

An essential component of our approach is to model how retrieval
systems produce a ranked list of relevant documents. For each query,
typical IR collections (e.g., TREC) supply relevance judgments and
rankings of documents produced by several participants. Given each
query-system pair, we model the presence of relevant documents in
the ranking produced by the system as follows. For each position 𝑝

in the ranked list, we know the relevance value (𝑟𝑝 ∈ {0, 1}) of the
document ranked at the 𝑝-th position2. With logistic regression,
we can model how relevance decays as we go down in the rankings.
We build a logistic regression model where the target variable
is relevance, the only predictor is the position in the rank, and
the training set contains as many examples as ranked documents:
{(1, 𝑟1), . . . , (𝑟𝑎𝑛𝑘𝑠𝑖𝑧𝑒, 𝑟𝑟𝑎𝑛𝑘𝑠𝑖𝑧𝑒 )}. The fitted model has the form:

ℎ\ (𝑝) =
1

1 + 𝑒−\0−\1 ·𝑝
(1)

Figure 1 shows an example of this fit for one pair (system, query).
This model can be employed to simulate multiple rankings for
the same system-query pair. To meet this aim, we produce a new
ranking by iteratively drawing Bernoulli samples over each position.
The Bernoulli distribution at each position is defined from the
fitted Logistic model at that position. Algorithm 1 illustrates this
process. Observe that this simulation approach does not produce
actual ranked documents but relevance values (the variable𝑅𝑎𝑛𝑘𝑖𝑛𝑔
of size 𝑟𝑎𝑛𝑘_𝑠𝑖𝑧𝑒 stores a sequence of 0s and 1s). This sequence
suffices to compute any IR performance metric and, next, evaluate
the significance tests.

Algorithm 1: Algorithm for simulating a new ranking.
Input: A logistic regression fitted model, ℎ\

1 𝑅𝑎𝑛𝑘𝑖𝑛𝑔←{};
2 for 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 1 . . . 𝑟𝑎𝑛𝑘_𝑠𝑖𝑧𝑒 do
3 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖𝑃𝑎𝑟𝑎𝑚 ← ℎ\ (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛);
4 Draw a sample 𝑟𝑒𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∼ 𝐵𝑒𝑟𝑛(𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖𝑃𝑎𝑟𝑎𝑚);
5 𝑅𝑎𝑛𝑘𝑖𝑛𝑔[𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛] ← 𝑟𝑒𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

6 end

2In this paper we work with binary relevance, but these models are potentially appli-
cable to fit systems with graded relevance judgments.

To compare significance tests under H0 (null hypothesis true),
we obtain the fits of the system (e.g., 50 fits for a typical TREC
collection with 50 queries), we produce two simulations from the
same system (two new rankings for each fit), we compute the as-
sociated performance metric (e.g., yielding 50 Average Precision
values for each simulation) and, next, we input these two sequences
of performance values to the significance tests. By repeating this
process over multiple systems and repetitions, we can evaluate
how effective significance tests are. This experiment allows us to
estimate the probability of a type I error, 𝑃 (𝑅𝑒 𝑗𝑒𝑐𝑡 𝐻0|𝐻0).

By manipulating the parameters of the logistic regression model,
\0 and\1, we can also simulate the situationwhereH0 is false. Given
a fit obtained for a certain system-query pair, we can obtain a better
or worse retrieval system by producing a new logistic regressor
whose probability of relevance (ℎ\ ) is higher or lower, respectively.
To this aim, we increase or decrease the values of \0 and \1 by a
given proportion. The probability of relevance grows with \0+\1 ·𝑝
and, thus, we produce an improved version of the system by setting
\∗
𝑖
= \𝑖 · (1 + 𝑝𝑟𝑜𝑝)𝑠 , where 𝑠 equals 1 if \𝑖 is positive and equals

−1 if \𝑖 is negative, and 𝑝𝑟𝑜𝑝 is the proportion parameter. For
example, with 𝑝𝑟𝑜𝑝 = 0.1 (10%) and \1 = −0.2 this leads to \∗1 =

−0.2 · (1.1)−1 = −0.18. Figure 2a shows that the average MAP of the
systems grows with 𝑝𝑟𝑜𝑝 . This effect is a natural consequence of
the higher production of relevant documents in the rankings. In our
experiments, we obtain the original fits of a system, and we produce
a better model for each fit. Observe that the simulation is stochastic
and, thus, the better versions of the individual query models do
not always produce better performance than the original models.
Figure 2b plots the effect of a 5% manipulation of the parameters.
This boxplot demonstrates that the resulting model is generally
more effective but some queries are improved while other queries
are deteriorated. Given the two sequences of performance metrics
(e.g. APs from original model vs APs from the improved model),
we input them to the significance tests and study their ability to
detect the difference. If a given significance test does not reject the
null hypothesis then we record a type II error (non-rejection of a
false null hypothesis). By doing this experiment with increasingly
higher differences between the two models (higher 𝑝𝑟𝑜𝑝 , i.e. higher
effect size), we can analyze the power of the tests under different
effect sizes. As argued in [14], the output of the significance tests
should be considered in combination with the effect size.

Table 1 reports the main statistics of the collections used for ex-
perimentation. The first experiment aimed to validate the simulated
models. To demonstrate that the fitted models are good represen-
tatives of the original models, we ranked all the original TREC
systems with the original qrels and compared this ranking against
a ranking of systems produced by simulation. The original rank-
ing represents the relative ordering of the real systems, while the
second ranking represents the relative ordering of systems that are
simulated from the original ones. We used Mean Average Precision
(MAP) as the reference metric for ordering systems, and we ran
1000 simulations for each system. Table 2 shows the average cor-
relations between original ranking and simulated rankings. These
correlation figures (and the associated p-values) demonstrate that
the simulation does not significantly alter the ranking of systems,
which is an integral part of IR evaluation. As argued by Voorhees
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Figure 2: Validation experiments: (a) Average MAP against increasing improvements of the systems. (b) Effect of a 5% im-
provement in the systems (for each collection, the boxplot summarises the distribution of improvements across queries in
100 repetitions of each query for all queries and participant systems).

[23], levels of correlation above .85 indicate that the compared rank-
ings are highly similar and, although not identical, the simulated
rankings do not impact noticeably on the reliability of the compari-
son. Additionally, we tested the equality of the two AP distributions
(actual TREC system vs simulated TREC system). To this aim, we
ran the Cucconi non-parametric test of equality of distributions.
This test has been shown to be robust to changes in the scale and
location of the distribution [10]. We applied Cucconi’s tests on
the available TREC systems (𝛼 = 0.05) and found no noticeable
differences between the original and the simulated systems.

4 EXPERIMENTS
In our experimental study we employed the simulated systems to
evaluate the following significance tests: the t-test, the Wilcoxon

signed rank test, the sign test, the permutation test, and the Boot-
strap test3. A full description of these tests can be found in [6] and
brief explanations on the use of the tests in IR experiments are
available in [11, 20]. We will focus our analysis on the two-sided
paired-sample case, which naturally arises in standard IR experi-
ments where two retrieval systems ran the same sets of queries.
Average Precision was taken as effectiveness metric. Moreover, we
also performed additional experiments with one-sided paired tests
and other performance metrics (we briefly discuss those results in
Section 4.3). Our simulations can also support the evaluation of
tests oriented to multiple comparisons and repeated measures [17],
but we left this comparison as future work.

3We experimented with the Bootstrap test as defined in [20].



Table 1: TREC collections and system runs used in our experiments (ad-hoc – Category A – tracks). The last two columns
report the average and standard deviation of the MAPs of the participating systems.

Edition Topics # Relevant docs. # Systems ` MAP 𝜎 MAP
TREC 3 151-200 9805 40 0.2573 0.0848
TREC 5 251-300 5524 61 0.1898 0.0676
TREC 6 301-350 4611 74 0.1716 0.0876
TREC 7 351-400 4674 103 0.1991 0.0802
TREC 8 401-450 4728 129 0.2345 0.0965

Table 2: Correlation between the original ranking of systems and the ranking of systems produced by simulation. The systems
were ranked by decreasingMAP. The p-values for the significance testing (positive one-sided) of the correlation values are also
reported.

Pearson’s 𝑟 p-value Kendall’s 𝜏 p-value Spearman 𝜌 p-value
TREC 3 0.9900 3,1 · 10−34 0.9077 2,2 · 10−16 0.9812 0,0
TREC 5 0.9649 2,8 · 10−36 0.8459 2,9 · 10−22 0.9621 0,0
TREC 6 0.9686 1,4 · 10−45 0.8534 2,8 · 10−27 0.9636 0,0
TREC 7 0.9476 3,8 · 10−52 0.8473 3,7 · 10−37 0.9604 0,0
TREC 8 0.9695 1,1 · 10−79 0.8216 1,1 · 10−43 0.9479 3,1 · 10−65

The experiments are fully reproducible, and the code that builds
the models and runs the simulations is available at our institutional
website4.

4.1 Null hypothesis true
Figure 3 summarizes the results obtained when the null hypothesis
is true (the compared samples are taken from the same simulated
system without modifying the 𝑝𝑟𝑜𝑝 parameter). For each TREC col-
lection, the results correspond with the comparison of all available
systems against themselves over 10,000 repetitions. Experiments
were done with three configurations of query sizes (10, 30 and
50 queries, chosen randomly from the available queries). Given
a significance value, the estimation of type I error is obtained by
computing the proportion of comparisons where the significance
test rejected H0.

By design, significance tests are expected to have a proportion
of type I errors that matches the significance level (set to 0.05 in
Figure 3). For each collection and significance test, the bars show
that the higher number of queries the closer the test gets to the
expected proportion of type I errors. This is in accordance with the
long-held recommendation that IR experiments should not have a
low number of queries.

Wilcoxon and permutation tests achieve the expected proportion
of type I errors. The other tests show a lower proportion of this type
of errors. From a practical perspective, these lower counts of errors
might seem convenient but this outcome shows that the p-values
obtained by these three tests do not accurately estimate the proba-
bility of finding the observed difference between systems when H0
is true. The study reported in [11] only experimented with systems
that reveal retrieval scores but also found that Wilcoxon and per-
mutation both match the expected ratio of type I errors. To further
analyse this point, we ran additional experiments with 50 queries,

4https://www.dc.fi.udc.es/~parapar/testing-tests

10,000 repetitions and varying significance values5. Figure 4 shows
the results of this experiment. Again, Wilcoxon and permutation
show a pattern that fits with the target proportion of errors, while
the other tests (particularly, Bootstrap) show significant deviations.

4.2 Null hypothesis false
Next, we ran a series of experiments where each model was com-
pared against an improved variant of the same model. These exper-
iments are reported in Fig.5. The lefmost point (0%) corresponds
with the case of equal models, while the rest of the points cor-
respond with increasingly larger differences between the mod-
els being compared (i.e., increased effect size by varying 𝑝𝑟𝑜𝑝 ∈
{0.005, 0.010, 0.015, ..., 0.250}). For every TREC edition and effect
size, each system was compared against its improved version (and
this comparison was repeated 10,000 times). For each comparison,
a sample of 50 AP values was drawn from the 50 original models
and another sample of 50 AP values was drawn from the altered
models6.

The Wilcoxon test is a clear winner. Under all circumstances, it
performs better at rejecting the null hypothesis. The fact that the
Wilcoxon test has higher power than the other tests was also shown
in [11], and this finding is consistent with authorative studies on
Statistics. For example, Conover [6] demonstrated that the t-test
has less power than permutation and permutation has less power
than Wilcoxon.

The Wilcoxon test and the sign test make fewer assumptions
about the data. Other tests, such as the t-test, use more information
from the data in their statistics (e.g., magnitudes of the differences)
and one could think that this would be an advantage to detect a
difference. Effectiveness data, however, rarely satisfy the condi-
tions imposed by parametric tests. The t-test, for instance, assumes
normality on the data. In Figure 6 (left) we can observe how the

5𝛼 ∈ {0.001, 0.002, ..., 0.009, 0.01, 0.02, ..., 0.09, 0.1}
6Note that each system-query pair produces an individual fit.

https://www.dc.fi.udc.es/~parapar/testing-tests
https://www.dc.fi.udc.es/~parapar/testing-tests


.00

.01

.02

.03

.04

.05

.06

Wilcoxon t-test Signed Permutation Bootstrap

P
(R

e
je

c
t 

H
0

|H
0

)

TREC 3

.00

.01

.02

.03

.04

.05

.06

Wilcoxon t-test Signed Permutation Bootstrap

P
(R

e
je

c
t 

H
0

|H
0

)

TREC 5

.00

.01

.02

.03

.04

.05

.06

Wilcoxon t-test Signed Permutation Bootstrap

P
(R

e
je

c
t 

H
0

|H
0

)

TREC 6

.00

.01

.02

.03

.04

.05

.06

Wilcoxon t-test Signed Permutation Bootstrap

P
(R

e
je

c
t 

H
0

|H
0

)

TREC 7

.00

.01

.02

.03

.04

.05

.06

Wilcoxon t-test Signed Permutation Bootstrap

P
(R

e
je

c
t 

H
0

|H
0

)

# queries
10
30
50

TREC 8

Figure 3: Average 𝑃 (𝑅𝑒 𝑗𝑒𝑐𝑡 𝐻0|𝐻0) (𝛼 = 0.05) in different TREC collections. For each collection, system and significance test,
10,000 experiments were run under H0, with different number of queries (increasing the sample size)

vast majority of the differences (in terms of AP) between pairs of
TREC systems do not follow a Normal distribution according to
Shapiro-Wilk normality tests (normality hypothesis is rejected with
𝛼 = 0, 05 in most of the comparisons7). On the other hand, the
permutation test assumes that observations are interchangeable
under 𝐻0. For that to be true, equality of variances should hold.
As argued in [2], this homogeneity requirement is well known but
often overlooked and the permutation test should not be employed
when the distributional requirements are not satisfied. On several
applications of the permutation test, it has been observed that the
robustness of this test is affected by the violation of this condition
[2]. In Figure 6 (right) we show that the Brown-Forsythe test [4]
(for equality of variances; 𝐻0: samples have homoscedasticity) is
rejected with 𝛼 = 0, 05 in the vast majority of the cases. More re-
cently, Huang et al. [8] revisited this problem and showed that the
permutation test for equality of means can be either too liberal
or too conservative when samples have unequal variances. The
heteroscedasticity of the paired samples also indirectly affects to
the t-test: if the two groups do not have similar variances it is likely
that the differences will not be normally distributed. In fact, Brown
also found that the t-test is affected by the non homogeneity of
variances, emerging the sign test as the most robust test in those
situations [3].

Our experiments suggest that the permutation test is competitive
when the benchmark has a low number of queries (10). However,
the permutation test is substantially inferior to Wilcoxon when
the benchmark has a higher number of queries (e.g. 50 queries,

7Shapiro-Wilk is considered to have good power [12].

which is the typical situation in most IR experiments). The sign test
is comparable to Wilcoxon in experiments with 30 or 50 queries
but it is substantially inferior to Wilcoxon when the comparison
is done with 10 queries. These experiments also show that the t-
test and the Bootstrap test are the worst performers in terms of
power. This superiority of the Wilcoxon test has been pointed out
before in the literature. In [1], Blair and Higgins showed that the
Wilcoxon Signed Rank test is more powerful that the t-test in most
of the distributional situations, and increases its advantage with
the sample size. Similar problems for the t-test on non-paired data
were reported in [19].

By analysing the power of each test with increasingly larger
query sets (10, 30 and 50), the reader can also observe how power
increases with the sample size, which is a well-known result in
Statistics.

4.3 Additional Experiments
We performed additional experiments where we tested other perfor-
mance metrics –Normalized Discounted Cumulative Gain (NDCG)
and P@10– and other variants of the significance tests (one-sided
versions) under the same settings. These experiments confirmed
the superiority of the Wilcoxon test and essentially revealed the
same trends identified in the two-sided AP experiments reported
above. Due to space constraints we only show a representative
example. Figure 7 shows the power curves, computed using NDCG,
that compare the (two-sided and one-sided) significance tests using
one of the collections. The curves clearly demonstrate the ability of
the Wilcoxon test to detect differences in NDCG between systems
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Figure 4: Type I error rates with varying significance levels in different TREC collections. For each collection, system and
significance test, and significance level 10,000 experiments were run under H0, with 50 queries.

when the null hypothesis is false. Similar curves were obtained
from the rest of the collections and for the one-sided variant of the
tests.

Furthermore, we repeated the experiments but considering an
alternative scenario that sometimes happens in IR evaluation. In
some cases, system 𝑏 is just a variation of an existing system 𝑎.
For example, imagine that 𝑏 aims at improving 𝑎’s performance
for certain types of queries (e.g., ambiguous queries or multi-topic
queries). Under this setting, system 𝑎 and 𝑏 will yield the same
performance for all queries but those that were manipulated by 𝑏.
To further analyze the power of the tests under those situations
(where the underlying model is only better for certain topics), we
repeated the experiments by only improving a specific number of
randomly selected query models (the rest of the models were not
altered)8. The results for this experiment on TREC5 (2-sided for
MAP) are shown in Figure 8. We found the same trends for all the
datasets but space constraints preclude their inclusion here. The
results corroborate the conclusions of previous experiments about
the relative power of the tests. Additionally, this simulation shows
that the power of the tests when improving 10 queries out of 50 is
lower than when improving 10 queries out of 10 (see Figure 5).

8Remember that, as shown in Fig. 2b, the simulation is stochastic and, thus, a better
query model does not always yields better effectiveness.

5 CONCLUSIONS
Our paper contributes with a novel approach to model the pattern
of occurrence of relevant documents in search results rankings.
Although the proposed models can support a number of IR tasks,
we focused here on exemplifying the potential of these models to
evaluate the use of tests of statistical significance in IR evaluation.

As shown by Sakai [15] and Carterette [5], the use of statistical
tests in IR is pervasive, but IR practitioners do not have a clear
method of choice. Our systematic comparison of significance tests
for IR aims to fill this gap. The proposed method, which does not
depend on the existence of scores, is free from the problems of
previous comparisons [11, 20, 21, 24]. We worked with full control
over𝐻0 and modelled realistic and unbiased IR research conditions.
Our conclusions agree with the ones of [11] and with established
knowledge about the statistical tests [6].

We showed that Wilcoxon, and to a lesser degree, the sign test
are the most powerful tests. IR practitioners should opt for the most
powerful test. Choosing a low power test can lead to researchers to
discard new innovations just because the test is not able to detect
that the new model is indeed significantly better than the state-
of-the-art. Of course, there is an important distinction between
statistical significance and practical significance. No statistical test
can tell you whether a given improvement is large enough to be
put into production. In any case, choosing an inadequate test can
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Figure 5: Average 𝑃 (𝑅𝑒 𝑗𝑒𝑐𝑡 𝐻0) (𝛼 = 0.05) on different TREC collections. For each system and significance test, 10,000 experi-
ments were performed and averaged. The experiments ranged from comparing equal systems (leftmost point, 0% increment)
to comparing substantially different systems (25% increment) (in steps of 0.5%). Different columns correspond to different
number of queries (increasing the sample size)
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Figure 7: Average of the 𝑃 (𝑅𝑒 𝑗𝑒𝑐𝑡 𝐻0) (𝑝 < 0.05) on TREC 8 for NDCG (averaged over 10,000 repetitions). The experiments
ranged from comparing equal systems (leftmost point) to comparing substantially different systems (in steps of 0.5%).

slow the advance of IR research, where improvements are generally
not dramatic.

As future work, we plan to extend the use of this methodology to
other types of experimental comparisons. In particular, our simula-
tion approach could be employed to support experiments comparing
multiple systems, where a system is compared with many others.
As argued by Sakai [17], other tests, such as the Tukey HSD test
or the Bonferroni Correction, are required under this setting. Our
models can naturally simulate the output of multiple systems and,
thus, we can evaluate other tests that are adequate for comparing
multiple systems and can support repeated measures.
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