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ABSTRACT
Identifying the topic of a search query is a challenging problem,
for which a solution would be valuable in diverse situations. In this
work, we formulate the problem as a ranking task where various
rankers order queries in terms of likelihood of being related to a
specific topic of interest. In doing so, an explore-exploit trade-off is
established whereby exploiting effective rankers may result in more
on-topic queries being discovered, but exploring weaker rankers
might also offer value for the overall judgement process. We show
empirically that multi-armed bandit algorithms can utilise signals
from divergent query rankers, resulting in improved performance
in extracting on-topic queries. In particular we find Bayesian non-
stationary approaches to offer high utility. We explain why the
results offer promise for several use-cases both within the field of
information retrieval and for data-driven science, generally.
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1 INTRODUCTION AND MOTIVATION
The problem of algorithmically determining the type or topic of
a search query is important for many reasons. Several of the key
services provided by Web search engines, including ranking and
advertising, rely on understanding the user’s intention. Increasingly,
the adverts shown [30] or the means of support provided by search
engines, such as the provision of in-line results [8] or answering
questions directly [5], are determined by making a prediction about
the user’s information need.

A further motivation for identifying queries related to a given
topic of interest is the development of test collections for research
purposes. Researchers in diverse fields require to identify materials
from the web relating to specific topics or themes and often achieve
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this by sampling user search queries [9, 27, 33]. We are particularly
interested in the identification of web pages which relate to food
and weight-loss. As such, we take this problem as an exemplar in
this paper, but one could imagine the techniques presented being
used in diverse comparable contexts.

There are several aspects that make the estimation of the topic
of a query a challenging research problem. First, queries are typ-
ically short and contain little information. Second, the queries in
existing query samples or logs are in most cases extremely topi-
cally divergent and, as such, isolating specific topics can be akin
to a finding a needle in a haystack. Third, queries are often am-
biguous and noisy (e.g., contain misspelled words). Researchers,
moreover, must contend with a lack of resources when estimating
the topic of search queries. Few datasets are available for training
and testing and, as with any human annotation problem, collect-
ing labels is expensive. We argue that reinforcement learning and
multi-armed bandits in particular can reduce the cost required to
create resources and extract samples of queries associated with
certain kinds of information needs.

Given a large sample of queries and a set of ranking methods
that nominate candidate queries (i.e. queries that are potentially
on-topic) from the query set, the process of judging queries from
the candidate rankings can be naturally cast as a reinforcement
learning problem. Initially, we know nothing about the relative
quality of the rankers but, as judgements become available, we
can dynamically adapt the process. Guided by multi-armed bandit
algorithms, we can increasingly focus on the most effective rankers
and, as a result, we can extract a sample of on-topic queries in a
cost effective way. We demonstrate this empirically using a case
study where the challenge is to identify queries associated to food
and nutrition from within a large sample of web queries.

We structure the remainder of our paper by first reviewing appro-
priate literature in Section 2. We continue, in Section 3, to explain
the methodology applied in detail, including the bandit allocation
strategies tested and rankers used to provide a variety of signals,
as well as how ground-truth judgements are created. Finally, we
report and discuss our results in Sections 4 and 5, respectively.

2 RELATEDWORK
First, we summarise literature on query classification and related
problems in information retrieval (IR). Second, we review approaches
for addressing the cost of human judgements in test collection gen-
eration, including pooling in IR, which is related to the problem we
address. Third, we examine how multi-armed bandits have been
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applied to diverse problems. These reviews combine to motivate
our work and justify the decisions taken with respect to the design
of the presented experiments.

2.1 Query Classification
Pioneering researchers in IR recognised the potential for improv-
ing search technologies with text classification techniques [20, 37].
Query Classification –one specific text classification task in IR– is a
challenging topic that has attracted researcher attention for many
years. Some efforts have classified queries in terms of type, such as
in terms of Broder’s taxonomy of web searches [17]. Others have
classified queries with respect to geographic locality as a means
to establish local or global intent [15]. Others still have focused on
predicting the topic of queries [4]. Indeed, some evaluation cam-
paigns have focused on such query categorisation. For example,
in 2005, the KDD Cup –the annual Data Mining and Knowledge
Discovery competition– organised a challenge aiming to categorise
800,000 queries into 67 predefined categories [21]. This campaign
recruited human editors to label a portion of the available queries,
producing a ground truth composed of only 800 queries. This il-
lustrates the difficulties in creating large samples of categorised
queries. We argue that smartly prioritising the queries to be judged
is an effective way to create larger samples for query classification
problems.

The KDD Cup 2005 also revealed barriers to understanding the
meaning and intention of search queries. As many queries are
vague or ambiguous and most are very short, there is a need to
gather extra information to augment the queries (e.g., by running
the queries against web search engines and using the retrieved
results to expand the queries). For example, the winning team in
the KDD Cup 2005 [34, 35] employed an ensemble of search engines
to produce intermediate representations of the queries which were
then mapped to the target categories. The KDD Cup 2005 task was
a multi-label task involving 67 target categories, while we focus
here on a two-class categorisation task where the challenge is to
extract queries related to a given topic of interest. However, the
lessons learned in this campaign are useful to us when defining
appropriate query representation approaches.

2.2 Test Collection Generation
One of the biggest challenges in the generation of test collections
in any field is the cost of human judgements. In adhoc search
these judgements involve estimating the relevance of documents
for queries (topics). This is especially problematic in modern test
collections, which try to simulate naturalistic search scenarios such
as the web, and as such contain hundreds of millions of documents
[7]. One solution from Information Retrieval has been to employ
“pooling”, which was advocated as a means of efficiently locating
a sample of relevant documents within a large test collection. For
each query, the output of diverse searches is merged to form a
pool of documents, which is then assumed to contain all or nearly
all relevant documents [38]. In pooled test collections, relevance
assessments are only done for the documents that are in the pool.
With a sufficient number of rankers and a reasonable pool depth
(number of top documents extracted from each ranker), the manual

judgements can be made at an affordable cost and the resulting test
collection is solid and reusable [41].

Given that pooling is fundamental to modern IR evaluation, the
concept has attracted considerable research attention in the decades
since its initial use e.g. [6, 10, 11, 18, 40]. A number of studies have
concentrated on efficient ways to scan pools, with the objective of
extracting a sufficient number of relevant documents as quickly
as possible. MoveToFront [11] and Moffat et al.’s methods [28] are
classical prioritisation algorithms in this area. Losada and colleagues
[24] have recently shown that effective document prioritisation
togetherwith smart stopping can reduce up to 95% of the assessment
effort and still produce a reliable test collection.

Recent work, as described in the next section, has attempted
to use a family of algorithms related to the multi-armed bandit
problem to improve on such methods.

2.3 Applications for Multi-armed Bandits
Multi-armed bandits are one manifestation of the exploration ver-
sus exploitation problem, which is the search for a balance between
exploring one’s environment to find profitable actions while taking
the empirically established best known action as often as possi-
ble [3]. Multi-armed bandit approaches have become fundamental
in reinforcement learning [39]. Such approaches have recently been
applied for various purposes in IR. Hofmann et al. [16] proposed
bandit-based models to handle user interactions with a search en-
gine as a means to improve online learning to rank. Here, the web
search engine has to exploit existing knowledge regarding how
to provide a good ranking, but it must also to explore by testing
new variations of the current ranking algorithm. Taking a simi-
lar approach, Yue and Joachims [42] presented an online learning
framework based on duelling bandits to compare retrieval algo-
rithms. The approach is based on feedback gathered from users
(ordinal judgements) and learns by observing interactions with
interleaved results. Sloan and Wang [36] argued that document
relevance changes over time and proposed a dynamic method that
learns from clickthrough data and tries to optimise user satisfaction
by employing multi-armed bandits and the Portfolio Theory, which
handles diversity.

Radlinski et al. [31] used amulti-armed bandit approach that uses
click-through data with the aim of balancing relevance and diver-
sity in rankings. The authors’ approach analysed user clickthrough
behaviour and aimed to minimise user abandonment in interac-
tive environments. Besides bandit-based approaches, other authors
have proposed othermethods to handle the exploration/exploitation
tradeoff. This includes Karimzadehgan and Zhai [19], who balanced
presenting search results with the highest immediate utility to a
user against presenting search results with the best potential for
collecting useful feedback information. The aim being to optimise
the utility of relevance feedback over a session of interaction. In a
spirit similar to ours, Losada and colleagues [22, 23] applied ban-
dit algorithms to the pooling problem where decisions must be
made as to which documents are judged by expensive human as-
sessors. As multiple retrieval systems contribute to the pool, an
exploration/exploitation trade-off arises: exploiting effective sys-
tems could find more relevant documents, but exploring weaker
systems might also be valuable for the overall judgement process.
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Figure 1: Query Rankers.

Losada et al. showed that simple multi-armed bandit models pro-
vide superior performance to all previous adjudication strategies. In
this work, we test if a similar approach can be applied to query clas-
sification which, as we view it, is analogous to the pooling problem
in IR.

3 METHOD
We start from a large collection of queries and we utilise a number
of differing query rankers, where queries are ranked in order of
how likely they are predicted to relate to a topic of interest (i.e. diet
and nutrition). We evaluate competing reinforcement learning ap-
proaches to establish which approach can best combine signal from
the provided rankings to generate evidence for topical relatedness
of queries. Reinforcement learning is a dynamic process and, as
such, we evaluate the approaches both in terms of how able they are
to use evidence provided via different rankers and the amount of
evidence required (i.e., how deep in the respective rankings should
be explored).

Given a set of rankers ranking queries in decreasing order of
estimated likelihood that they are related to diet and nutrition (see
Fig. 1), we are interested in finding as many relevant queries as
possible for the same amount of assessor effort. Initially, we have
no knowledge about the relative quality of the rankers. As we
extract queries from the provided rankings, we gain evidence on
the quality of the rankers and the judging process can be oriented
towards the most effective sources. At any given point, we can opt
to further explore rankers that currently look suboptimal because
these inferior rankers may at some point become good sources of
relevant queries. When we refer to “Playing a machine” we mean
selecting a ranker and examining the next query supplied by the
ranker. Every ranker supplies queries in order of ranks (i.e., the top
query precedes the second and so on). The query is judged and the
outcome of the play is the binary relevance of the query (i.e. food
related or not). Queries that have already been judged (i.e., have
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Figure 2: Bandit algorithm for iteratively selecting query
rankers.

already supplied by another ranker) are simply skipped. Figure 2
illustrates this bandit selection process.

In our bandit experiments, the judgements are obtained from
an oracle, which as shown in Section 3.3 can achieve extremely
high precision on a comparable, but small dataset with expensive
human judgements. This oracle is comparable to an expert human
judge, not only because of its high performance, but because it is
associatedwith financial cost. Annotating a full query sample would
be beyond the means of most researchers. This is why bandits are
required to prioritise the queries sent to the oracle for judgements.
This is a comparable situation to pooling in the main adhoc search
task.

In the following subsections, we complete the description of the
methodology applied first, by detailing the various bandit allocation
strategies tested, next by outlining the rankers used and lastly by
explaining how the oracle judgements were derived.

3.1 Bandit Allocation Strategies
In the context of multi-armed bandits, an allocation strategy or
policy is an algorithm that chooses which machine should be played
next based on past plays and obtained rewards. Each policy captures
distinct ideas on how to handle the tradeoff between exploration
and exploitation. Regret is the expected loss due to the fact that
the allocation strategy does not always play the best machine. The
following paragraphs explain the main features of well-known
allocation strategies, which we test empirically in this work.

3.1.1 Random. This is a naive allocation strategy that chooses
the next machine to play at random. This serves as a baseline for
comparison.
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3.1.2 𝜖𝑛-greedy. Employing a greedy strategy would mean always
playing the bandit with the highest average reward1. In doing so,
this strategy maximises immediate rewards by allocating no time
to exploring seemingly inferior actions. A greedy method performs
worse in the long-term as it often gets stuck performing suboptimal
actions, which showed promise early on. A simple variation is to ap-
ply a greedy strategy most of the time while occasionally selecting
an action at random. A simple algorithm that implements this idea
is 𝜖-greedy [39]. At each step, 𝜖-greedy plays the machine with the
highest mean reward with probability 1−𝜖 , and a randomly chosen
machine with probability 𝜖 . 𝜖-greedy eventually performs better
than a purely greedy algorithm because it continues to explore,
improving the chances of identifying optimal actions.

Rather than setting a constant probability of exploration, it is
usually good to make that 𝜖 decreases as our estimates become
more accurate. To meet this aim, 𝜖𝑛-greedy lets 𝜖 go to zero with a
certain rate:

𝜖𝑛 = 𝑚𝑖𝑛(1, 𝑐 · 𝐾
𝑑2 · 𝑛

), 𝑛 = 1, 2, . . . (1)
where 𝑛 is the round number, 𝑐 > 0 is a parameter, 𝐾 is the number
of machines, and 𝑑 is usually set to the difference (in mean reward)
between the best choice and the second best2.

3.1.3 Upper Confidence Bound (UCB). UCB policies associate a
so-called upper confidence index to each machine. The machine to
be played at round 𝑛 is the machine with the largest empirical mean
of obtained rewards. While it would be desirable to simply sample
from this seemingly superior machine, we need to ensure that the
other machines have been sufficiently sampled such that we can
be reasonably confident that they are indeed inferior. One way of
achieving this is to compare the upper confidence bound for the
mean of an apparently inferior approach to the mean of the leader.
The index of UCB1 policy computes the current mean reward and
adds a term related to the size of the one-sided confidence interval
for the mean reward. UCB1-Tuned [3] is a variant of UCB1 that
accounts for the variance in performance of each machine and has
been shown to be empirically superior to UCB1:

Algorithm 1: UCB1-Tuned
Play each machine once;
Loop

Play machine 𝑗 that maximises the following estimate:

𝜇 𝑗 +
√

ln𝑛
𝑛 𝑗
·𝑚𝑖𝑛(1/4, 𝜎2

𝑗
+
√

2 ln𝑛
𝑛 𝑗
)

where 𝜇 𝑗 and 𝜎2𝑗 are the mean and variance of the rewards obtained
from machine 𝑗 so far, 𝑛 𝑗 is the number of times machine 𝑗 has
been played, and 𝑛 is the overall number of plays.

A feature of the algorithm is that the quantity added to the
sample average is steadily reduced as the machine is played, and
uncertainty about its reward probability is reduced. As a result, by
choosing the machine with the highest optimistic estimate, UCB1-
Tuned smoothly shifts from exploration to exploitation.
1Initially, all averages are set to 0.5.
2In document pooling experiments [22] it was shown that effectiveness was insensitive
to𝑑 andmoderately sensitive to 𝑐 (all 𝑐 ∈ (0, 0.1] yielded similar results). We therefore
set 𝑑 to 0.1 and 𝑐 to 0.01.

3.1.4 Bayesian Bandits. The methods described so far all take a
frequentist approach, where mean rewards are considered as un-
known deterministic quantities and the goal of the algorithm is
to achieve the best parameter-dependent effectiveness. Bayesian
approaches, in contrast, apply quantitative weighting of evidence
supporting alternative hypotheses.

Each machine is characterised by a parameter which reflects a
prior distribution. This parameter represents the probability of win-
ning (in our case the probability of supplying a relevant query). The
Bayesian process begins by assuming complete ignorance of these
probabilities and, therefore, applying a uniform prior,U(0, 1), for
each machine. We select our next machine from these distributions
and observe the result of playing the machine. With binary rewards,
the result is Bernoulli or, equivalently, Binomial with a single trial.
This binary reward is used to revise our belief about the probability
of the specific machine. The initial priors are 𝐵𝑒𝑡𝑎(1, 1) –Beta han-
dles the uniform distribution as a particular case– and Beta is the
conjugate prior distribution for Binomial. Given a prior distribution
𝐵𝑒𝑡𝑎(𝛼, 𝛽) and a binary reward 𝑅, the posterior distribution is also
Beta: 𝐵𝑒𝑡𝑎(𝛼 +𝑅, 𝛽 + 1−𝑅). Bayesian inference, therefore, provides
a natural framework allowing us to formally handle uncertainty
about the probabilities of winning.

Bayesian Learning Automaton (BLA) [14] (Algorithm 2) follows
this approach and randomly samples from the posterior distribu-
tions to choose the next machine to play. BLA is parameter-free
and typically performs significantly better than both UCB and 𝜖𝑛-
greedy [14]. A further Bayesian solution we implement selects the
next machine by taking the maximum expectation of the posterior
distributions. This exploitation method will be referred to as𝑀𝑀
(MaxMean)3: 𝑛𝑒𝑥𝑡_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ← argmax𝑚 𝛼𝑚/(𝛼𝑚 + 𝛽𝑚).

Algorithm 2: Bayesian Learning Automaton
foreach 𝑚 ∈ machines do

𝛼𝑚 ←1, 𝛽𝑚 ←1;
Loop

foreach 𝑚 ∈ machines do
Draw a sample 𝑥𝑚 from 𝐵𝑒𝑡𝑎(𝛼𝑚, 𝛽𝑚);

𝑛𝑒𝑥𝑡_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ← argmax𝑚 𝑥𝑚 ;
Play 𝑛𝑒𝑥𝑡_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 and get 𝑅𝑛𝑒𝑥𝑡_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ;
𝛼𝑛𝑒𝑥𝑡_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ← 𝛼𝑛𝑒𝑥𝑡_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 + 𝑅𝑛𝑒𝑥𝑡_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ;
𝛽𝑛𝑒𝑥𝑡_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ← 𝛽𝑛𝑒𝑥𝑡_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 + 1 − 𝑅𝑛𝑒𝑥𝑡_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ;

Rather than simply updating the distribution of the played ma-
chine (i.e. the ranker that supplied the last query judged), we opt to
update the Beta distribution of all rankers that retrieved the same
query. In doing so we allow evidence about relevance to affect other
rankers4.

3.1.5 Non-stationary variants. In the Bayesian models described
above, the unknown probability of bandit success does not change,
and all rewards –recent or old– are treated equally. Non-stationary
solutions, on the other hand, account for the possibility that these
3The expectation of a distribution 𝐵𝑒𝑡𝑎 (𝛼, 𝛽) is 𝛼/(𝛼 + 𝛽) .
4With𝑀𝑀 , this update sometimes leads to several machines having the maximum
mean. Ties are resolved by choosing the played machine.
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distributions may change and, as a consequence, allow to weight
recent rewards more heavily than long-past ones [39]. This makes
sense in our case as the quality of the rankers will reduce as we
move down in the rankings –we would not expect even a good
ranker to constantly supply relevant queries to the bottom of the
ranking. As queries are examined the probabilities of relevance
of the rankers will change and so will the relative performance
of different rankers. A ranker that was initially strong might be
weak at lower rank positions when compared to the competing
rankers. Stationary bandit approaches run the risk of concentrating
too much on rankers with old wins, leading to suboptimal solu-
tions. One popular means of tracking non-stationary problems is
to incorporate a parameter that ensures accumulated rewards are
computed as a weighted average of the past rewards and the last re-
ward. This idea can be easily incorporated into the Bayesian models
BLA and MM. At any given point, the parameters of the posterior
distribution of a given ranker 𝑟 are:

𝛼𝑟 = 1 + 𝑗𝑟𝑒𝑙𝑟 (2)
𝛽𝑟 = 1 + 𝑗𝑟𝑒𝑡𝑟 − 𝑗𝑟𝑒𝑙𝑟 (3)

where 𝑗𝑟𝑒𝑙𝑟 is the number of judged queries that are relevant and
were retrieved by 𝑟 , and 𝑗𝑟𝑒𝑡𝑟 is the number of judged queries
that were retrieved by 𝑟 . Updating 𝑗𝑟𝑒𝑙𝑟 and 𝑗𝑟𝑒𝑡𝑟 can be governed
by a rate parameter that motivates the method to learn changing
environments [13]. Given the binary relevance of the last query
judged, 𝑟𝑒𝑙𝑞 , the parameters of the rankers retrieving this query
are updated as:

𝑗𝑟𝑒𝑙𝑟 ← 𝑟𝑎𝑡𝑒 · 𝑗𝑟𝑒𝑙𝑟 + 𝑟𝑒𝑙𝑞 (4)
𝑗𝑟𝑒𝑡𝑟 ← 𝑟𝑎𝑡𝑒 · 𝑗𝑟𝑒𝑡𝑟 + 1 (5)

If 𝑟𝑎𝑡𝑒 = 1 this is the standard approach, where all outcomes
count the same. If 𝑟𝑎𝑡𝑒 > 1 the method applies more weight to early
relevant queries. Conversely, if 𝑟𝑎𝑡𝑒 < 1 the method applies more
weight to the last relevant query found. Here, we test the most strin-
gent variant, 𝑟𝑎𝑡𝑒 = 0 (with such a setting, only the last judgement
counts). The non-stationary approach with this setting was shown
to be highly effective in nominating documents to be judged for a
standard adhoc search task [22]. Updating the parameters of the
posterior distributions in this way leads to new Bayesian methods,
which we refer to as non-stationary Bayesian solutions (𝑟𝑎𝑡𝑒 = 0)
(BLA-NS and MM-NS). BLA-NS, once the distributions are updated,
selects the next ranker by sampling from the posterior distribution.
MM-NS simply selects the posterior distribution with the largest
mean. Observe that setting 𝑟𝑎𝑡𝑒 to 0 preserves the formality of the
model: rewards are still Bernoulli and priors/posteriors are still Beta.
Setting 𝑟𝑎𝑡𝑒 = 0 can be seen as a re-initialisation of the machine’s
counts immediately before to playing the machine.

3.2 Rankers Tested
We implemented 15 query rankers to provide the basis for our ban-
dit experiments. These rankers reflect a broad spectrum of retrieval
mechanisms with divergent quality. This gives the bandit algo-
rithms the opportunity to identify and focus on the most effective
approaches. The rankers consist of variants of two main types.

The first class of methods follow standard IR techniques and
search for relevant queries using a state-of-the-art retrieval model,
BM25 [32]. The BM25 ranker was implemented using the Whoosh

Python library with the default configuration5. Search was done
with three different queries: a base query (𝐵𝑄), which contains only
the words “food” and “diet”, and two expanded queries. These two
expanded queries aim to mitigate the effect of poor overlapping
between the base query and the target queries. We expanded the
base query with i) the 𝑁 most similar terms to “food” and ii) the
𝑁 most similar terms to “diet”. The two expanded queries, BQ+15
and BQ+30, correspond to setting 𝑁 to 15 and 30, respectively.
Words similar to the base words were obtained using Word2Vec
embeddings [25, 26]. Word embeddings are high-quality distributed
vector representations of words that capture semantic relationships.
More specifically, we employed prebuilt Word2Vec models gener-
ated from English Wikipedia6 (non-stemmed words represented
as 1000-dimensional vectors) and we utilised Gensim’s Word2vec
library7 to load the vectors and compute similarities.

To further increase the recall of on-topic queries, we also in-
cluded some variants that perform pseudo-relevance feedback [12]
from the output of the BM25 search. Tomeet this aim, we performed
query expansion following the Bo1model from the Divergence from
Randomness (DFR) framework [2]. This is a robust expansion ap-
proach that obtains new search terms from the top results of the
initial ranking8. In our experiments, the new terms were sourced
from the top 100 results (top 100 queries identified by the initial
BM25 search) and we included up to 20 new terms. Overall, this led
to 12 different query rankers (3 possible initial queries * 4 possible
feedback settings: 0 –i.e., no feedback–, 1, 2 and 3 rounds of feed-
back). These 12 query rankers will be referred to as BM25(<Q>,
<N> PRF), where <Q> is BQ, BQ+15 or BQ+30 and <N> equals 0,
1, 2 or 3.

A second class of query rankers implemented a vectorial rep-
resentation of the base query and each target query. To meet this
aim, we employed Sent2Vect [29], an unsupervised method to learn
representations of sentences. Word embeddings allow to repre-
sent words as N-dimensional vectors and, depending on the train-
ing method utilised, semantically similar (or contextually-related)
words are assigned vectors that are close to each other in the pro-
jected space. Sent2Vect obtains vectorial representations of sen-
tences by aggregating word and n-gram embeddings and simulta-
neously training the composition and the embedding vectors. We
employed a pre-trained Sent2vec Bigrammodel9 produced from the
English Wikipedia. Wikipedia articles cover a wide range of topics
and therefore have an extensive vocabulary. Using this resource, we
represented the base query and each target query as centroid vec-
tors (averages of the Sent2Vec representations of the constituting
terms) and ranked the target queries by decreasing cosine similarity.
We implemented 3 variants of this embedding-based approach to
extract relevant queries: i) a method that only includes the words
“food” and “diet” into the base query, ii) a method that includes
“food”, “diet” and all their hyponyms fromWordNet (52 words) into
the base query, and iii) a method that includes “food”, “diet” and

5See https://whoosh.readthedocs.io/en/latest/intro.html. We utilised the Okapi BM25F
ranking function with a single field and default parameters: 𝑏 = 0.75 and 𝐾1 = 1.5.
6https://github.com/idio/wiki2vec
7https://radimrehurek.com/gensim/models/word2vec.html
8We used the default implementation of Bo1 available from Whoosh
(https://whoosh.readthedocs.io/en/latest/keywords.html).
9sent2vec_wiki_bigrams, 16GB (composed of vectors with 700 dimensions). Available
at https://github.com/epfml/sent2vec.
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more than 130 additional words related to food and nutrition and
collected as part of an open source project10. These three methods
will be referred to as Sent2Vec(BQ), Sent2Vec(BQ+WordNet), and
Sent2Vec(BQ+WordList), respectively.

3.3 Evaluating the Oracle
To evaluate the relevance of the ranked queries we would need
human judgements. But human judgements are expensive and, thus,
a manual labelling method would not scale. We therefore designed
and evaluated an “oracle-classifier”, which expands the queries and
runs them against an external classification service. The oracle
was evaluated against a set of manually labelled queries, obtained
from KDD 2005. The details of this validation are provided in this
subsection.

As argued in [21], query classifiers face a great challenge. Queries
are typically short, noisy and result from subjective user intents.
A common approach to mitigate the lack of information consists
of augmenting queries by gathering extra information from web
resources. To meet this aim, we ran first each query against a state-
of-the-art search engine (Google Custom Search API11) and aug-
mented the query with the title and snippet of the top 𝑘 results.
Next, the augmented query was sent to a external classification
service, the Google Cloud Natural Language API12. This exter-
nal service includes a content-based classifier that assigns labels
from a large set of categories13. Since we are interested in food
or diet-related queries, we considered that on-topic queries are
those assigned with the “/Food & Drink” and “/Health/Nutrition”
categories. This external service has an associated cost and, thus,
a massive use is prohibitive. This is why scientists interested in
building query-related resources need to prioritise the queries (e.g.,
using multi-armed bandits) that are labelled by humans or sent to
this type of services.

In order to evaluate this oracle-based approach, we obtained food
and diet related queries from the 800 labelled queries available from
the KDD cup 2005 [21]. The organisers of this campaign recruited
three human editors to label a sample of 800 queries manually using
67 categories. Since we focus on two-class classification, we divided
the queries into food/diet related and food/diet unrelated14. In total
43 of the 800 queries were considered to be related to food or diet.
We augmented all queries with search results snippets (top 𝑘 results,
with 𝑘 ranging from 1 to 10) and sent them to the external classifi-
cation service. The optimal performance was achieved using 𝑘 = 5
(acc=0.98, P=0.97, F1=0.83). This suggests that this oracle-based
approach effectively identifies on-topic queries and we therefore
adopted this method as a proxy of human judgements.

3.4 Bandit Experiments
We ran the 15 query rankers against a large sample of 59, 673 queries,
obtained from the TREC million query tracks15. Next, we started a

10https://github.com/imsky/wordlists
11https://developers.google.com/custom-search
12https://cloud.google.com/natural-language/
13See https://cloud.google.com/natural-language/docs/categories
14We included into the food/diet set those queries assigned to the KDD category
“Living/Health&Fitness” by at least one of the judges.
15We downloaded all queries used in the TREC 2007, 2008 and 2009 Million Query
Tracks (https://trec.nist.gov/data/million.query09.html) and removed duplicates.

Table 1: Number of relevant queries found at different num-
ber of judgements performed. For each judgement level, the
highest number of relevant queries found is bolded.

Number of Judgements
Method 100 500 1000 1500 2000 All

RANK 88 344 589 756 874 913
RANDOM 89 337 534 667 827 913
𝜖-Greedy 91 349 530 674 825 913
UCB 86 339 533 666 824 913
BLA 90 333 500 582 820 913
MM 91 344 513 617 882 913
BLA_NS 89 311 479 596 820 913
MM_NS 90 384 637 789 909 913

multi-armed bandit process where the rankers play the role of arms
or machines and where the allocation policy selects a given ranker
(arm), from which to extract the next (unjudged) query from the
top of the corresponding ranking. The extracted query is sent to
the oracle classifier and the output is used to update the state of the
bandits (see section 3.1 for further details about the multi-armed
bandit strategies tested). To put the results into perspective, we also
experimented with a rank-based method (RANK) where queries
are simply selected in decreasing order of rank (top 1 queries go
first and, next, top 2 queries, and so forth). The process was run
until depth 𝑘 = 700. The pool of judged queries (union of the top
700 ranked queries) contains 2, 160 unique queries (of which 913
were relevant according to the oracle).

4 RESULTS
Table 1 reports the number of relevant queries identified by each
bandit allocation strategy at varying judgement levels. At the end
of the process, all strategies identify the same number of relevant
queries (all pooled queries judged). However, some strategies are
much quicker than others to identify on-topic queries. Identifying
queries earlier leads to a reduction in required effort in judgement
as we can simply stop the assessment process when a sufficient
number of search queries are found.

The following conclusions can be drawn from these experiments:
• Unsurprisingly, randomly selecting the next ranker from
which to extract a query is the worst performing alloca-
tion strategy. Applying this naive method does not exploit
evidence gained with respect to which rankers are good
sources of relevant queries and, thus, tends to identify rele-
vant queries slowly compared to the other, more principled
approaches.
The number of on-topic queries found by randomly selecting
rankers is not very low, particularly after judging the first
100 queries. This is also the case with all of the allocation
strategies tested. Note that rankers –regardless of how their
type– are designed to order queries by the likelihood that
they related to food or diet. Thus, despite rankers being se-
lected at random, the queries themselves are drawn in order
leading to reasonable performance, reflecting the overall
performance of the rankers.
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• The 15 query rankers tested are reasonably effective at find-
ing on-topic queries. The top 100 positions, in particular,
contain a large proportion of relevant queries and 42% of the
pooled queries are relevant.
• The best performing strategy overall was MM-NS. This is
a non-stationary Bayesian method that quickly reacts to
the presence of non-relevant queries in the rankings. Other
methods, such as UCB or 𝜖𝑛-greedy, are slower to abandon
rankers that offered good performance initially but deterio-
rate with rank. The superiority of MM-NS over alternative
bandits (and over the RANK baseline) aligns well with the
results found in pooling document judgments [22, 23]. The
increasing evidence for the utility of such Bayesian Bandits
justified their adoption in TREC 2017 when creating the rele-
vance judgments of the Common Core Track [1]. Our results
add to this evidence and support the potential of this rein-
forcement learning methods to create labelled judgments in
a cost effective way.

Table 2 reports the first 50 queries judged following the MM-NS
approach. These show that the multi-armed bandit method does
a good job at extracting on-topic queries with a high percentage
of food or diet related queries being present. Note that the oracle
classifier is not perfect (particularly in terms of recall, as reported
in section 3.3) and, thus, a few on-topic queries (e.g., “diverticu-
losis diet”) are wrongly classified as off-topic. On the other hand,
queries that are clearly off-topic (e.g., “electromagnetic spectrum”)
are correctly labelled as non-relevant by the oracle. Although we
miss some queries that are potentially relevant, the quality of the
set of queries estimated as relevant is very high. Indeed, for most
use cases, the precision of the resulting query set is the most crucial
aspect. For example, in online advertisement, we typically do not
want to show advertisements that are totally unrelated to the user’s
needs and, thus, a precise identification of the target queries is cru-
cial (otherwise the advertisements might be perceived as confusing
or annoying by the web users).

Figures 3 and 4 provide final insights into how different bandit
allocation strategies function in practice. Figure 3 helps to illustrate
the exploitation vs exploration behaviour of the diverse bandit algo-
rithms by depicting the percentage of times they “jump” to explore
new possibilities (i.e., the next machine is different to the last played
machine). The MM algorithms show a clear exploitation-oriented
behaviour and they tend to explore less often at the beginning of
the process. At the initial stages, queries are extracted from high
positions of the ranked lists, where relevant queries abound. The
MM algorithms select the ranker with the highest average and, thus,
at the beginning of the process, they tend to stay on the winners (no
reason to leave a good supplier of queries). Note also that MM_NS
jumps more than MM because it is non-stationary (MM averages
the full history of previous rewards –relevant/non-relevant queries
extracted– while MM_NS has a highly stringent notion of history
where only the last extraction counts). On the other hand, the other
bandits (UCB, 𝜖-Greedy, BLAs and random) explore many more
options and do so continuously until very late in the process. It is
only after rank 1800 that exploring reduces.

Figure 4 shows which rankers provided input to the most effec-
tive algorithm (MM_NS) and how this changed as the algorithm

Table 2: First 50 queries extracted by MM-NS. The first col-
umn shows the search queries extracted and the second col-
umn reports the relevance value according to the oracle clas-
sifier.

Search Query Relevance Value

daily nutrition calories and fat 1
healthy snacks 1

dietary supplement fact sheet vitamin c 1
vegetable calories 1

vitamins and supplements 1
vitamins supplements 1
vitamin e supplement 1

healthy cooking 1
healthy nutrition 1
nutrients in food 1

list dietary supplement 1
risk of dietary supplement 1

healthy meal recipes 1
why are vegetables healthy 1

food calories 1
sat fat trans fat and fat from calories 1

eating food 1
how much fat and calories do vegetables and fruits have 1

healthy eating plan 1
learning to eat healthy 1

diet supplements with ephedra 1
nutrition and eating right 1
lact-enz dietary supplement 0

assay of magnesium 1
93150 pill 0

diet 1
dieting 1
food 1

lupus diet 1
diet exchanges 1

brat diet 1
watermelon diet 1
diverticulosis diet 0

diabetic diet exchange list 1
electromagnetic spectrum 0

low fat low sodium heart healthy foods 1
list of low fat foods 1
heart healthy diets 1

heart healthy meal recipes 1
calories in food list 1

low calorie cook books 1
low protein dog food 0
diabetic exchange diet 1

pet food recall 0
mediterranean diet 1
hepatitis a diet 0

diabetic diet vs dash diet 1
himalayan diet 1

vlcd diet 1
atheletes diet 1

progressed deeper in the process. Initially, traditional IR approaches
(several BM25 variants) were deemed to be the best source of rele-
vant queries (at high ranking positions they are good suppliers of
relevant queries). Indeed, in the first 100 plays the Sent2vec rankers
were never chosen at all. However, as the process continues, the
Sent2vec variants become important and eventually dominate. This
is a natural consequence of the respective characteristics of these
methods. The BM25 variants are essentially term matching models
and, even with expansion and pseudo-feedback, their ability to
retrieve lots of relevant queries is limited. The Sent2Vec variants,
instead, have a recall-oriented nature and, by employing embed-
dings, they can identify target queries that have no overlapping
at all with the seed terms. In this way, when the top positions of
the BM25 rankers become exhausted of relevant queries the pro-
cess concentrates more on variants such as Sent2Vec(BQ+WordList)
which, at the end of the process, was the most frequently selected
ranker.
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5 DISCUSSION & CONCLUSION
In this work we have described experiments, which show that multi-
armed bandit algorithms can utilise signals from several divergent
query rankers resulting in improved performance in extracting on-
topic search queries. In this section we discuss what these results
mean in the context of past and future work in different fields.

Firstly, our experimental findings contribute to the multi-armed
bandit literature, generally. As shown in Section 2.3, even within the
research domain of information retrieval, a multitude of use-cases
have been found for which multi-armed bandit algorithms offer
utility. We add one further use-case –on topic query identification–
to this literature.

Our results align strongly with those published by Losada and
colleagues for the pooling problem [22] which, we argue, exhibits
a great deal of similarity to the query classification problem as we
set it up. We found the non-stationary Bayesian allocation strategy
was the dominant approach beyond a judgement level of rank 100.
This was also the case in the experiments by Losada et al.

We investigated the query classification problem in a slightly
different form to how has been studied previously in the IR litera-
ture (i.e., as a multi-class classification problem). In our work, we
instead employ a binary classification setup where a single query
topic needs to be isolated. This makes more sense for our needs
(identifying queries related to food and diet) and –as we argue–
for other purposes, too. This kind of task would be important, for
example, when systems are required to provide specific support
for queries relating to a particular topic. One hypothetical exam-
ple would be applying fact-checking to results relating to political
queries. Another could be red-flagging or sensoring queries relat-
ing to child pornography or other sensitive or illegal domains. As
mentioned in the motivation for this paper, a binary topic-based
query classification setup is also a common use-case in fields such
as public health, where many scholars have the aim to study or
evaluate commonly accessed web-pages relating to a particular sub-
ject [9, 27, 33]. Sampling from naturalistic query logs –which our
methods facilitate– is likely to provide a much more representative
pool of queries than the approach commonly applied where it is
typical to gather sample queries from a small convenience sample
of users. Our work, therefore, opens up the potential for researchers
to better identify representative web pages for their research.

Although our experiments and the discussion of the results have
focused on IR related problems, it is important to recognise that
this approach could be exploited in diverse situations in science,
generally. Evaluation is crucial to scientific progress. In many dis-
ciplines, particularly those that employ data driven approaches,
creating a gold standard set of judgements is very often a major bot-
tleneck when building a test collection or benchmark for evaluation.
Gold standard or ground truth annotations are typically produced
by humans and are, therefore, expensive and time consuming to
collect.

In terms of future work we plan to apply the bandit methods
discussed here to query classification as a multi-class problem to
see if similar benefit can be obtained. A second line of planned
future work is to apply pooling methods in Machine Learning and
Data Mining. More specifically, we will study pool-based ways to
prioritise unlabelled items in different contexts. We expect –and

our results here endorse our thoughts– prioritisation strategies to
be helpful in building robust and effective ground-truth data.
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Figure 3: Percentage of Jumps by different Multi-armed Bandit methods.
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