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Abstract. In this research, we investigate the effectiveness of Large
Language Models (LLMs) in answering health-related questions. The
rapid growth and adoption of LLMs, such as ChatGPT, have raised
concerns about their accuracy and robustness in critical domains such as
Health Care and Medicine. We conduct a comprehensive study compar-
ing multiple LLMs, including recent models like GPT-4 or Llama2, on a
range of binary health-related questions. Our evaluation considers var-
ious context and prompt conditions, with the objective of determining
the impact of these factors on the quality of the responses. Addition-
ally, we explore the effect of in-context examples in the performance of
top models. To further validate the obtained results, we also conduct
contamination experiments that estimate the possibility that the mod-
els have ingested the benchmarks during their massive training process.
Finally, we also analyse the main classes of errors made by these models
when prompted with health questions. Our findings contribute to under-
standing the capabilities and limitations of LLMs for health information
seeking.

Keywords: Binary Question Answering · Health · Large Language
Models

1 Introduction

The emergence of Large Language Models (LLMs) has induced significant
improvements in performance on various Natural Language Processing (NLP)
downstream tasks [28,29]. The appearance of BERT [7], GPT-2 [30], and GPT-3
[3], among others, has accelerated the development of LLMs. With the increas-
ing reliance of users on online medical information [10], the reliability of these
models to provide correct responses to health-related information needs must
be put under scrutiny. The potential consequences of incorrect health-related
information can result in personal harm [26,36]. Hence, the evaluation of the
robustness of these models in this critical domain is of utmost importance. In
addition, it must be taken into account that the performance of LLMs is highly
dependent on the prompt and context provided by the questioner [3,13,20].
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In this paper, we present a systematic evaluation of LLMs, exploring their
potential to correctly answer health-related questions. To that end, we com-
pare multiple LLMs and examine their performance on a range of binary health
questions extracted from standardised Information Retrieval (IR) collections.
Our evaluation considers a wide range of context and prompt conditions and
we discuss the potential challenges and implications of using LLMs for health
information needs. Our ultimate goal here is not to attain the highest possi-
ble performance but, rather, to gain insights into these AIs’ responses given an
assorted set of input conditions. Through the conducted experiments, we try to
answer the following research questions:

– To what extent do LLMs provide correct answers to binary health-related
questions? How different models perform for this task?

– To what extent does the provided context and demonstrations influence the
models’ answers?

– Are these models really responding to unseen questions? Is their effectiveness
conditioned by some form of data contamination?

– What kinds of mistakes do these LLMs tend to make?

2 Related Work

Current LLMs have great potential for addressing health-related and medical
information needs. However, their reliability for such critical task remains largely
unknown, as most efforts have focused on general domain tasks. For instance,
Jiang et al. [13] tried to optimise knowledge discovery in LLMs by generating
high quality prompts (manual or automatic) and by exploiting ensemble meth-
ods. Liu et al. [19] focused their efforts on another critical aspect, the optimal
configuration of in-context examples to enhance GPT-3’s few shot capabilities.
They found that this is specially crucial in Text Generation tasks. Other recent
studies [17,20] performed systematic reviews of different models, prompts, met-
rics and tasks. The appearance of ChatGPT has also stimulated targeted studies
to gauge the model’s knowledge and utility for a number of tasks [1,2,34].

Several fine-tuned models have been specifically built for the medical
domain [16,37]. However, existing evaluations of these models have been
restricted to a single specialised topic, like genetics or radiology, and there is
a lack of comparisons across multiple models [4,8,12,14,31,35]. Evaluating the
accuracy of general-purpose LLMs for multiple types of medical queries has
received little attention. A recent study [38] analysed the impact of prompts in
health information seeking. However, the study was confined to a single LLM
(ChatGPT) and the main goal was to evaluate prompts that incorporate sup-
porting and contrary evidence obtained from a search engine.

Our contribution consists of a systematic evaluation of LLMs’ capabilities to
correctly answer health questions. We will only focus on these models’ internal
knowledge and we will assess their performance when prompted with different
inputs and in-context examples. In contrast to previous studies, we will system-
atically compare several models and we will focus on general health questions,
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without restricting the analysis to specialised topics. Moreover, we include the
recently released Llama2 model in our comparison1. We also report our endeav-
ours to estimate if the models really generalise well or, by the contrary, they
have seen these benchmarks during its pre-training process (i.e., we study the
so-called data contamination [11,22,23,33]). Finally, we also provide an initial
exploration of the most common mistakes (e.g., about a medical treatment).

3 Experimental Design

3.1 Models

We considered language models of different nature (close and open source)
and architecture. We restrict the study to general-purpose models that are
freely available to end-users. Thus, fine-tuned models like ChatDoctor [37] or
BioBERT [16] are out of the scope of this research (as standard web users
do not have the knowledge to install and invoke these tools). For a rigorous
experimentation, we considered recent LLMs of different nature (including both
proprietary and open source models):

– GPT-3 is a series of models with a decoder-only structure with 175 billion
parameters. Its training corpus is extensive, encompassing a variety of web
sources and the entire Wikipedia, with information up to June 2021. These
models were built on top of InstructGPT [25] and were fine-tuned with human
feedback using reinforcement learning (RLHF). For these experiments we con-
sidered two different versions: text-davinci-002 (d002) and text-davinci-003
(d003).

– ChatGPT is similar to InstructGPT, but it meant a paradigm shift towards
more conversational interaction [9]. Its training data goes up to September
2021. For these experiments we used gpt-3.5-turbo version (a snapshot from
June 2023).

– GPT-4. It is a bot also designed for conversational purposes. It serves as
a cutting-edge advancement in this field and surpasses ChatGPT’s perfor-
mance in various tasks that require human-like intelligence, such as passing
an exam [24]. Its training data also goes up to September 2021. For these
experiments we used gpt-4-8k version (a snapshot from June 2023).

– Flan T5 is a sequence-to-sequence model developed by Google. It was fine-
tuned on instruction-based datasets, which include a wide range of informa-
tion collected up until 2022 [21]. For these experiments we used the flan-t5-xl
version.

– Llama2 is the most recent model developed by Meta AI. It was trained with
over 1 million human annotations on conversational data. Its training data
goes up to September 2022, but its fine-tuning also includes data up to July
2023. We used the llama-13b-chat version for these experiments.

1 https://ai.meta.com/llama/.

https://ai.meta.com/llama/
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Fig. 1. A topic from the TREC 2021 Health Misinformation Track (Topic 101).

The first three models were tested through OpenAI’s official Python API2,
while the two latter ones were tested through their Hugging Face implementa-
tion.

We are aware that there is a growing concern in the scientific community
about evaluations performed on proprietary models. Sometimes, it is difficult
to guarantee reproducibility of a model that suffers constant updates and where
the technical intricacies (e.g. architectural design or training data) are unknown.
However, we believe that the adoption of these conversational AI systems by the
general population makes it necessary to put them under scrutiny. Regardless
of the open or close nature of each platform, the reality is that systems such as
ChatGPT are currently used by millions of users worldwide. Therefore, in this
paper we made an effort for reproducibility by providing the code3, the outputs
of each round, and all the dates of the execution of the experiments4.

3.2 Datasets

To conduct the evaluation, we used three different collections from the TREC
Health Misinformation (HM) Track [5,6]. The collections consist of health-
related topics, in the form of questions (e.g., “Can wearing masks prevent
COVID-19? ”), and web documents. For our experimentation, we only used the
questions and their binary ground truth answers (yes/no), which represent the
best understanding of current medical practice (gathered by the task organisers
when creating the collection). Figure 1 shows an example of a topic. The 2020
questions are all related to COVID-19, while the 2021 and 2022 questions encom-
pass general health information needs. The 2020 questions were released in mid

2 https://openai.com/blog/openai-api.
3 https://anonymous.4open.science/r/llm-binary-health-qa-8743.
4 These experiments were run between September and December 2023.

https://openai.com/blog/openai-api
https://anonymous.4open.science/r/llm-binary-health-qa-8743
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2020 and, thus, we cannot discard that the LLMs have seen this benchmark
within their training data. The 2021 questions were released in mid July and,
thus, they might have been available for all models, except for GPT-3, whose
training ended earlier. The 2022 questions, instead, could only have been seen by
Flan T5 or Llama2. This therefore conforms an assorted set of health questions,
with varying levels of difficulty for the models (depending on their exposure to
this type of data and the level of specificity of the information needs). In any
case, Sect. 6 further analyses the possibility of data contamination.

3.3 Contexts

As a core part of this research, we want to determine the effectiveness of these
models for health information seeking. First of all, we try to see how well they
would respond to non-expert end-users who give little or no context at all. This
leads to the following input prompts:

– no-context: a prompt composed only of the medical question, i.e. “Can Vita-
min D cure COVID-19? ”.

– non-expert: The text “I am a non-expert user searching for medical advice
online” plus the corresponding question. This prompt might be representative
of a regular user searching for medical advice.

In a second series of experiments, we also test more sophisticated prompts
and, additionally, evaluate the effect of in-context examples. These artifacts are
unlikely employed by normal users but, still, they can help to further understand
and exploit the models’ internal knowledge. We tested the following prompt:

– expert: The text “We are a committee of leading scientific experts and medi-
cal doctors reviewing the latest and highest quality of research from PubMED.
For each question, we have chosen an answer, either ‘yes’ or ‘no’, based on
our best understanding of current medical practice and literature.” plus the
corresponding medical question. This prompt was designed by Waterloo’s
team in their participation in the TREC 2022 HM track [27]. The rationale is
to bias the LLM towards reputed contents associated to high quality sources.

More elaborate prompt engineering techniques, like Chain-of-Thought (CoT)
could further enhance performance, but this was left as future work. The models’
temperature was set to 0, with the intention of minimising randomness in their
responses. To perform an automatic evaluation, we restricted the response of the
models to a single “yes” or “no” token via the model’s APIs.



330 M. Fernández-Pichel et al.

Table 1. Zero-shot experiments, proportion of correct answers of each model-prompt
combination for the three TREC datasets.

4 Zero-Shot Evaluation

As can be seen in Table 1, text-davinci-003 and Llama2 are the best performers
for TREC HM 2020 and 2021 collections. With the TREC HM 2022 collection,
GPT-4 and ChatGPT outstand. There are also some differences in performance
among the selected prompts. As expected, the most robust context seems to be
expert one. We hypothesise that this is due to the inclusion of keyphrases such
as “research from PubMed ” or “medical practice and literature”, which bias the
model towards reputable sources of knowledge.

Although models are relatively stable, they still exhibit some variations
depending on the input. This is concerning, as a model’s effectiveness can range
from 90% of correct answers to ≈ 75% of correct responses. The overall lev-
els of effectiveness are remarkable but, still, these inconsistencies are a cause
of discomfort. Even adopting the most consistent prompt (expert) we observe
concerning outcomes. For example, GPT-4 suffers from poor performance (66%)
in the 2021 dataset.

The three datasets vary in their level of difficulty. The 2020 health questions
(related to COVID-19) appear to be easier for the LLMs. A plausible explanation
for this phenomenon could be that the models might have already been exposed
to these health questions during their massive training. We will further explore
this possibility in Sect. 6. Another explanation could be that the highly relevant
and significant nature of COVID-19 as a topic might have motivated a specialised
curation process for the relevant data.

We also employed McNemar’s test to assess the significance of the differ-
ences between the top-performing models [15]. Between ChatGPT and GPT-4,
we found no significant difference in 7 out of 9 comparisons (3 collections × 3
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prompts). The pair ChatGPT vs Llama2 revealed no difference in 7 out of 9
comparisons and GPT4 vs Llama2 revealed no significant difference at all. The
pairwise comparisons d-003 vs ChatGPT, d-003 vs Llama2 and d-003 vs GPT-4
revealed more cases of statistical significance but, still, more than a half of the
compared instances yielded a no significance result.

5 Few-Shot Evaluation

To perform an analysis of the effect of demonstrations, we focused on the test
questions from TREC HM 2022. Each question was prompted to the models
prepended by one-to-three demonstrations extracted from TREC HM 2021. We
randomly chose three pairs of (medical question, correct answer) from the 2021
dataset as in-context examples and explored the effect of including them5. Past
research [17] has shown that evaluating a narrow range of in-context examples
is a solid choice.

As can be seen in Table 2, the effect of the demonstrations strongly depends
on the model. For instance, both versions of GPT-3 (davinci-002 and davinci-
003) and FlanT5 are the models that benefit the most from the inclusion of these
in-context examples. For these models, some in-context variants led to statistical
significant benefits. On the other hand, the best performing models under the
zero shot-setting do not seem to benefit from the inclusion of demonstrations.
Regarding types of prompts, the expert variant is the one that benefits most from
the inclusion of the few-shot examples. In terms of the number of examples, the
results suggest that prompting with more than one does not boost performance.

In Fig. 2, we plot the proportion of correct answers for Llama2 and text-
davinci-002 models (expert prompting) with varying number of demonstrations.
This evolution shows that the weakest model benefits the most, and more number
of in-context examples does not always translate into better performance.

6 Data Contamination

LLMs have shown excellent performance in multiple NLPs but, in some cases,
this might be attributed to the presence of golden truth data from the evaluated
benchmarks within the LLM’s training corpora. This is particularly concerning
with proprietary LLMs that do not disclose information about their training
data, as there is no direct way to consult the sources of the training data. A fair
evaluation of these models needs to test their generalisation abilities beyond the
training data. A system that directly copies the answer from an existing ground
truth file should not be considered as intelligent. A really intelligent system is
the one that learns about the world from the training corpora and, next, makes
proper inferences to answer new questions. Making an analogy with education, a
student who had access to the responses of the exam should fail while a student
who studied all the relevant material and submitted correct answers should pass.
5 We used these question-answer pairs (in this same order): (Will wearing an ankle

brace help heal achilles tendonitis?, No), (Does yoga improve the management of
asthma?, Yes), (Is starving a fever effective?, No).
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Table 2. Few-shot experiments, proportion of correct answers of each model-prompt
combination with three shot samples. For each row, if few shot surpasses the 0-shot is
marked in bold and the symbol * marks those cases where McNemar’s test (α = .05)
finds a significant difference between both variants.

Fig. 2. Proportion of correct answers for Llama2 and text-davinci-002 models with
expert prompting and different number of in-context examples.

Data contamination is an active area of research [11,22,23,33] that tries to
estimate whether or not a NLP benchmark was ingested during the pre-training
process. As part of our study, we have conducted data contamination estimation
experiments to further validate the capacity of the LLMs to correctly answer
medical and health questions.
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Table 3. Results for the data contamination experiments across different models and
datasets. For each guided vs general comparison, the symbol * marks those cases where
the guided completion surpassed the general completion and Wilcoxon test (α = .05)
found a significant difference between both variants.

We implemented Golchin et al. [11] heuristics, which were validated under
controlled contamination experiments6. Essentially, the approach consists of i)
prompting the model with a general instruction (with no information about the
benchmark or specific identifiers of the task or split), ii) prompting the model
with a guided instruction (which identifies the benchmark and task), and iii)
comparing the responses against the golden truth text. If the model’s output
obtained from the guided prompt has higher similarity to the ground truth text
compared to the model’s output from the general prompt then this is evidence
that the model might have seen the benchmark during its training. A statistical
significance test that compares the two means of similarity can thus mark those
cases where we can suspect that the model ingested the benchmark during its
pre-training7.

6 The code of our data contamination experiments is available at: https://github.com/
MarcosFP97/data-contamination.

7 Note that this is a high precision but low recall method. Meaning that if the method
estimates that the model ingested the dataset, we can state with some certainty
that it did. However, if the heuristic does not provide evidence, we cannot state with
certainty that the model did not ingest it.

https://github.com/MarcosFP97/data-contamination
https://github.com/MarcosFP97/data-contamination
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In our case, the general prompt was: “Complete the narrative field based on
the query, question and answer fields such that the narrative provides an explana-
tion for the answer to the given question. Query: {query}, Question: {question},
Answer: {answer}, Narrative:”. Meanwhile, the guided prompt was: “You are
provided with the query, question and answer fields of a topic from the TREC
{year} Health Misinformation topic set. Complete the narrative field of the topic
as exactly appeared in the dataset. Only rely in the original form of the topic in
the dataset to complete the narrative field. Query: {query}, Question: {question},
Answer: {answer}, Narrative:”. As can be observed, the latter prompt specifies
the name of the dataset and forces the model to produce the completion in its
original form. These two completions produce a pair of texts that are compared
against the narrative text from the actual benchmark. For computing the over-
lappings (general completion vs golden truth and guided completion vs golden
truth), we adopted the same metrics as in the original data contamination study
[11]: BLEURT to estimate lexical similarity [32] and ROUGE-L [18] to estimate
semantic relevance. Additionally, we also computed the Levenshtein distance,
which measures the number of character permutations needed to transform the
completion into the original data. This analysis was conducted for each available
topic (i.e., each TREC question produced two completions and we report the
average similarity across all topics).

We have performed this data contamination study for the most recent models,
as can be seen in Table 3. Our results show some evidence that GPT-4 might
have ingested TREC HM 2020 and TREC HM 2021 datasets, since we found
statistically significant improvements for the guided completion with respect
to the general one (in terms of semantic similarity). Levenshtein metric also
shows some evidence that Llama2 might have been trained with the TREC
HM 2020 collection. For ChatGPT we found no evidence that it has ingested
any benchmark. Still, it performs similarly to GPT-4 and Llama2 in the TREC
HM 2020 and 2021 collections (under the zero-shot setting) and there is no
statistical difference between ChatGPT and these two models. This also seems
to indicate that the good results by ChatGPT in the TREC HM 2020 collection
are not due to contamination effects but, rather, to the peculiar characteristics
of the COVID-19 topics. Furthermore, no model seems to have seen the TREC
HM 2022 collection and many models performed effectively for this dataset (see
Table 1). These results speak well of the capabilities of the LLMs models to
correctly transfer the knowledge acquired during training and produce accurate
answers to health and medical questions.

7 Error Analysis

To further understand the LLMs’ behaviour for this task, we inspected the ques-
tions where none of the models provided a correct answer8. This analysis was
8 We prompted again the models with these queries without restricting the form of

token output. For the sake of simplicity, we used only the most recent models (as in
the previous section).
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Fig. 3. Percentages of the different type of errors for the analysed prompting strategies.

done for the best performing prompt (expert) and for the no-context prompt,
which arguably reflects the type of input submitted by a regular user.

We found that for the TREC HM 2020 collection, models answered incor-
rectly 8% and 6% of the questions with the no-context and expert prompts,
respectively. For the TREC HM 2021, they failed in providing the correct answer
for 12% of the cases for both prompting strategies. Finally, in the TREC HM
2022, they answered incorrectly 4% of the queries for both strategies. These
results confirmed that TREC HM 2021 is the most difficult collection, with a
larger percentage of errors. It also seems that providing no context derives in a
greater or similar percentage of failed queries than using the expert prompt. After
manually inspecting the models’ outputs, we could organise the errors found into
a taxonomy that represents the most common health advice mistakes:

– Lack of knowledge about current medical consensus: Sometimes, mod-
els provide answers that go against the medical consensus. For instance, to the
question “Can Hydroxychloroquine worsen COVID-19?”, ChatGPT answered
“no, there is no evidence that hydroxychloroquine worsens covid-19...” while
medical evidence says otherwise9.

– Flawed interpretation of the question: Here, LLMs misinterpret the
question. For example, “Can bleach prevent COVID-19? No, bleach should
not be ingested...”. But the ground truth has the most obvious interpretation
of this question (the use of bleach for surface disinfection can actually prevent
COVID-19). A human would hardly interpret the question in this way.

– Unclear answer: We include in this category the responses in which models
did not provide a blunt answer. These cannot be counted as correct responses
but the LLM’s output is arguably useful, for example, “sit-ups can be both

9 FDA cautions against use of hydroxychloroquine for COVID-19.

https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or
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beneficial and harmful, depending on your individual circumstances and the
way you perform the exercise...”.

Figure 3 plots the percentage of each type of errors for the different prompting
conditions. In summary, lack of knowledge about medical consensus is the most
common error for both prompting strategies. This is a concerning outcome as it
is the most dangerous type of error. It also seems that providing expert context
mitigates possible flawed interpretations of the questions and it prevents unclear
answers, but it also comes with the cost of more mistakes about current medical
consensus.

8 Concluding Remarks

We have conducted an exhaustive evaluation on the ability of a set of LLMs in
providing the correct answer to health and medical questions. We have evalu-
ated the models with three different collections of medical question-answer pairs
and prompted them with different contexts, ranging from intricate prompts to
simpler prompts (close to those possibly submitted by non-expert users).

Under the zero-shot setting, the most sophisticated and modern models per-
formed similarly. However, there are still some causes of discomfort, e.g. in some
cases the models provide less than 70% of correct answers. This is a low figure
for a critical task such as health information seeking. We also found out that
intricate prompting strategies enhanced the performance compared with sim-
pler contexts. From our point of view, this is an obstacle for the adoption of
these models for health question answering. Note that end users are unlikely to
produce very sophisticated prompts. We also discovered that including few-shot
examples enhanced the performance even with the most complex prompt. How-
ever, the effect of the demonstrations is tied to the model, being the simpler ones
the most benefited from the provided examples.

On the other hand, our data contamination experiments have shed light on
the generalisation abilities of the models. We found no evidence that ChatGPT
has ingested any of the collections of health questions and, additionally, our
results indicate that no model has seen the TREC HM 2022 collection. This
breaks a lance in favour of the models, as many of the health questions were new
for them but, still, their performance was remarkable.

Finally, we conducted an error analysis in which we inspected the models’
answers. We organised the errors into a taxonomy and identified that, in some
cases, models provided advice that goes against the well-known medical consen-
sus. This behaviour, which also happens with the most sophisticated prompts,
is a barrier for the wide adoption of these models in their current form.
Limitations
We are aware that these conversational AI systems are highly sensible to the
input prompt. Our study represents an initial exploration with some manually
defined prompts and further prompt optimisation was left for future work. Our
ultimate goal here was not to achieve the highest possible performance but,



Large Language Models for Binary Health-Related Question Answering 337

rather, to test these AIs with an assorted set of input conditions. Other strategies
like chain-of-thought (CoT) prompting or prompt tuning were also left for future
work. With this research we do not intend to pursue the replacement of human
professionals that provide health advice. In fact, we firmly believe that human
validation is crucial to learn more about these systems and to leverage AIs
systems. For example, exploiting LLMs for automating certain documentation
tasks (e.g., collecting and curating recommendations generated by AI systems).
Finally, we are also aware that the evaluation of proprietary systems causes some
concern in the scientific community (because of the lack of transparency about
crucial aspects, such as their design and training data). However, as scientists,
we cannot ignore the fact that these tools are used by millions of individuals
worldwide and, thus, we need to evaluate the risks involved. In our study, we
have made a special effort for transparency providing the code, outputs and
dates of all experiments.
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