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Abstract. Determining reliability of online data is a challenge that has
recently received increasing attention. In particular, unreliable health-
related content has become pervasive during the COVID-19 pandemic.
Previous research [1] has approached this problem with standard classi-
fication technology using a set of features that have included linguistic
and external variables, among others. In this work, we aim to replicate
parts of the study conducted by Sondhi and his colleagues using our own
code, and make it available for the research community1. The perfor-
mance obtained in this study is as strong as the one reported by the
original authors. Moreover, their conclusions are also confirmed by our
replicability study. We report on the challenges involved in replication,
including that it was impossible to replicate the computation of some
features (since some tools or services originally used are now outdated
or unavailable). Finally, we also report on a generalisation effort made
to evaluate our predictive technology over new datasets [2,3].
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1 Introduction

The emergence of digital media has brought a change in the way people inform
themselves [4]. In many ways, this change has been positive, providing acces-
sibility of information and speed of access, but we must also be aware of the
dangers involved. The results offered can be unreliable [5], inaccurate [6], or of
poor quality [7]. This can have a greater or lesser impact depending on the con-
text [1], but is especially sensitive when it comes to health-related content,
as Pogacar et al. [8] showed in a recent study.

Medical hoaxes, miracle diets, or advice given by unqualified people abound
in this type of media [9] and can be highly dangerous if taken as true and applied
1 https://github.com/MarcosFP97/Health-Rel

https://github.com/MarcosFP97/Health-Rel
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without the supervision of a medical professional. This has become particularly
evident in the context of the pandemic we are facing, with substantial informa-
tion about COVID-19 being either dubious or of poor quality [10,11].

Often, language is a powerful indicator of the veracity of the contents [12].
Hidden patterns can be discovered not only by analysing the latent topics dis-
cussed in a certain text but also by studying the use of certain words [13]. An
example is the use of technical terms or formalisms, which is usually associated
with documents of higher quality and, in many cases, of greater reliability.

In this work, we report on our endeavours to replicate the predictive tech-
nology developed in Sondhi et al. [1], based on Natural Language Processing
(NLP) and Machine Learning techniques. We chose this study since, to our
knowledge, it was the first one to address the issue of automatically assessing
the reliability of webpages in the medical domain. They reduced this problem
to a binary-classification task. Moreover, they also provided a test dataset and
a set of features to be taken into account (see section 3).

If the results could be recreated, the conclusions extracted in the original
study would be verified and reinforced. This replication effort is worthwhile to
establish the utility of current technology, and its potential to be applied in
filtering non-reliable content.

To this end, we examined and, where possible, re-implemented the features
proposed by the original authors. In order for the results to be comparable, we
applied the same experimental methodology and performance metrics proposed
in the original paper. A final section is also provided in which our experiments
are extended and applied to two new datasets [2,3] for the sake of achieving
generalisation.

2 Related work

Several studies address the concept of the credibility of a webpage. Different
teams have broadly analyzed how online content credibility is assessed [14,15,16],
and they have concluded that subjective ratings are very likely to rely on the
user’s background [15], e.g. their trust in technology, or on their reading skills
[17].

Other researches focused on determining how the search engine result page
(SERP) listings are used to determine credibility through user studies [18]. More
specifically, several studies have been conducted related to assessing the credi-
bility of health-related content on the web. For instance, Matthews et al. [19]
analysed a corpus about alternative cancer treatments and found that almost
90% contained false claims. Liao and Fu [20] analysed age differences in credi-
bility judgments and argued that older adults care less about the content of the
site in comparison with younger ones.

Other teams focused on the association between different features and reli-
ability. For example, Griffiths et al. [21] showed that algorithms like PageRank
were unable to determine reliability on their own.
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Sondhi et al.

# Reliable 180
% Reliable 50%

# Unreliable 180
% Unreliable 50%

Table 1. Class distribution in Sondhi’s dataset.

As can be seen, there are several concepts intimately related such as reliabilty
[1], trustworthiness [2], credibility [3], or veracity [22]. Our reference study will
be Sondhi et al.’s [1] (which we will refer to from now on as the original paper),
so we will use the same notion of reliability as them. For determining reliabil-
ity, they defined their guidelines using the eight HONcode Principles2. For the
generalisation experiments, we will consider the rest of the concepts (credibility,
trustworthiness, etc.) as proxies of reliability (see section 6).

3 Dataset

The original authors manually created a fully balanced dataset with reliable
and unreliable webpages (see Table 1) that we directly used in our replicability
task. This eases the classification task, but it is not very realistic since in real-
world problems it is rare to find the same ratio among classes.

In the original paper, the authors randomly selected the positive pages from
those websites accredited by HON3 according to their principles. On the other
hand, as HON does not report non-accredited sites, they searched the Web with
a deliberate strategy to find poor quality pages. Using hand-crafted queries, such
as disease name + “miracle cure”. To ensure that topical overlap between nega-
tive and positive instances (i.e. to avoid topic-bias classification), they conducted
a topic analysis over the reliable corpus and extracted keywords related to dis-
eases that occur in the set of reliable pages. For each keyword, they manually
produced queries which involved terms like treatment or miracle. Finally, the
authors checked and selected 180 unreliable pages from the search results. As
the original download link for the dataset was no longer valid, the dataset was
sourced via personal communication with the authors.

The main goal of the original paper was to build a document-level classi-
fier using a standard supervised learning approach. We followed their experimen-
tal setup, in which the original authors argued that reliability can be represented
as a binary value as the first approach to this problem.

2 https://www.hon.ch/cgi-bin/HONcode/principles.pl?English
3 https://www.hon.ch/en/

https://www.hon.ch/cgi-bin/HONcode/principles.pl?English
https://www.hon.ch/en/
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3.1 Features

A variety of features were proposed based on style, content and external infor-
mation such as links. As will be seen, we were not able to apply all of these in
our experiments, since some tools or libraries were outdated, and other elements
were not described in a sufficiently detailed way.

In the original paper, webpages were represented using several features, namely:

– Link-based features: the number and type of links are usually a good
indicator of the type of website we are dealing with [23,24]. For example, as
Sondhi and his colleagues exposed, a more reliable site tends to have more
internal links, while a less reliable site tends to have more external links and
advertisements [25]. On the other hand, the presence or absence of privacy
policy information or contact links for the page author can be indicators of
reliability. This is because the presence of these types of elements gives a
sense of confidence to the user who consults the resource [26,27].
Based on these criteria five features were defined to be taken into account:
normalised value of internal links, normalised value of external links, nor-
malised value of total links, the presence or not of contact link (boolean),
and the presence or not of privacy link (boolean). For the latter two, the
original paper did not explain how they were computed. Therefore, we man-
ually defined two lists of privacy4 and contact5 expressions, such as Privacy
Policy or Contact Us, after performing a first exploratory analysis over the
documents.
For normalisation, the original authors analysed a random sample of doc-
uments and they experimentally chose a large normalisation denominator
(the link count was divided by Z1, which was set to 200).
In our experiments, the links were extracted from the text using the Beautiful
Soup6 Python package.

– Commercial features: the presence of commercial interest and advertisings
often indicates a low reputation [23,25]. Therefore, two characteristics were
defined to be taken into account: the normalised value of commercial links
and the normalised frequency of commercial words on the website.
For the latter, an initial list of indicative words of commercial interest was
proposed in the article. We manually extend this list7. Since the original arti-
cle was not explicit about word preprocessing, we followed a naive approach
in which a word must match exactly with some of the words in the list to
be taken into account in the final metric. This strategy can be improved in
future versions by applying lemmatisation techniques, for example.
Regarding normalisation, the normalised value of commercial links was ob-
tained dividing by the same Z1 used above. The second feature consisted of
dividing the number of commercial words found by the document length.

4 https://github.com/MarcosFP97/Health-Rel/blob/master/lexicon/privacy.txt
5 https://github.com/MarcosFP97/Health-Rel/blob/master/lexicon/contact.txt
6 https://www.crummy.com/software/BeautifulSoup/bs4/doc/
7 https://github.com/MarcosFP97/Health-Rel/blob/master/lexicon/comm_list.txt

https://github.com/MarcosFP97/Health-Rel/blob/master/lexicon/privacy.txt
https://github.com/MarcosFP97/Health-Rel/blob/master/lexicon/contact.txt
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://github.com/MarcosFP97/Health-Rel/blob/master/lexicon/comm_list.txt
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– PageRank Features: the authors of the original paper used this feature
as an indicator of the relative importance of a website [28]. However, this
service has been removed by Google, and all Python packages that used
their endpoint cannot be applied. It would be still possible to manually
compute PageRank based on the web graph. However, the current web graph
does not reflect the situation of these pages when the collection was created
(some pages are no longer accessible). Furthermore, previous work has shown
that such features capture the popularity of a website, but fail to measure
reliability [29].

– Presentation features: reliable content is usually presented carefully and
clearly [26]. To evaluate this, the original paper employed elinks8, a tool to
extract the text of the webpage. Then, they defined two features based on
the number of blank lines. However, in the final comparison, they did not
include this feature set, so we did not take it into account in our replicability
experiments.

– Word-based features: textual content and style are often good indicators
of the reliability or reputation of a website [12,13]. Therefore, each word in
a document was considered as a different dimension, taking its normalised
frequency score. Since the original authors did not declare the use of any
preprocessing stage, we applied no stemming or lemmatization.
We additionally considered two alternative pre-processing strategies, with
and without stopword removal. To achieve this, the NLTK9 English stoplist
was manually extended10 after a preliminary exploration of the documents.
Finally, for each word we divided the number of occurrences of the word by
the document length.

In addition to testing the feature sets in isolation, Sondhi and his colleagues
also considered a final combination that merged all features together. In our
case, we tested two variants of “all features” (one with word features extracted
with stopword removal and another one with word features extracted with no
stopword removal).

4 Experimental setup

When carrying out the experimentation, a vector support machine was used
as learning method. The original paper used a C++ implementation but, for
compatibility reasons, we employed the SVMlight11 Python wrapper. We are
therefore facing a two-class classification problem.

To evaluate the results, we applied 5-fold cross validation, as in the original
study. When generating the predictions, there could be two types of errors:
classifying a reliable page as non-reliable (FP) and classifying a non-reliable page

8 http://elinks.or.cz
9 https://www.nltk.org/nltk_data

10 https://github.com/MarcosFP97/Health-Rel/blob/master/lexicon/stopwords.txt
11 https://bitbucket.org/wcauchois/pysvmlight

http://elinks.or.cz
https://www.nltk.org/nltk_data
https://github.com/MarcosFP97/Health-Rel/blob/master/lexicon/stopwords.txt
https://bitbucket.org/wcauchois/pysvmlight


6 Fernández-Pichel et al.

Weighted Accuracy (%)
Features λ = 1 λ = 2 λ = 3

Links 60.8 71.1 79.6
Links + Commercial 67.8 75.9 79.6

Words 80.6 83.9 85.0
All 80.0 83.2 86.8

Table 2. Sondhi et al. original paper results.

as reliable (FN). The latter being the one we wish to avoid most. To make results
comparable, the performance metric used is the same as in the original paper:

Weighted Accuracy(λ) =
(λ × TP ) + TN

λ × (TP + FN) + TN + FP
(1)

Three variants were considered, corresponding to λ ∈ {1, 2, 3}. Moreover,
following the original paper strategy, the SVM classifier was trained with a cost-
factor set to the value of λ (the weighted accuracy λ=1 was obtained with a
SVM whose cost-factor was set to 1, the weighted accuracy λ=2 was obtained
with a SVM whose cost-factor was set to 2, and so forth). Such an approach
tunes the classifier to the measure that would later evaluate its effectiveness.

We note that the experiments were performed on an Ubuntu 19.04 machine,
with 32GB of RAM, 240GB of storage and an Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz. The Python version used was 3.7.3 in an Anaconda 4.8.0
environment. However, for the CLEF eHealth dataset experiments, detailed in
section 6.2.2, it was necessary to use a server due to the storage requirements.
More specifically, we used a CentOS 7.6.1810 machine, with 377GB of RAM,
15T of storage and Intel(R) Xeon(R) CPU E5-2630 v4 processor. The Python
and Anaconda versions used were the same as in the local experiments.

5 Results

Sondhi et al.’s original results are shown in Table 2. In our experiments, we
considered two variants for word-based representation: with and without stop-
word removal. Moreover, commercial features were not tested in isolation, but
combined with link-based features. This is reasonable since they are intimately
related to external and advertising links.

Our results (see Table 3) differ from the original ones, but the same conclu-
sions can be drawn: word-based features and the merging all features achieve
the best performance. Our comparison of the two word-based variants (with and
without stopwords) suggests that keeping stopwords is the safest approach to
estimate the reliability of a webpage.

We note that our best performance is higher than that obtained in the orig-
inal work. More specifically, in our case, we observed a high increase in the
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Weighted Accuracy (%)
Features λ = 1 λ = 2 λ = 3

Links 70.5 80.0 73.5
Links + Commercial 69.7 79.4 74.3

Words (removing stopwords) 80.8 80.2 80.3
Words (keeping stopwords) 82.8 85.6 88.5
All (removing stopwords) 97.5 98.3 98.6
All (keeping stopwords) 96.1 96.3 96.5

Table 3. Our results for Sondhi et al. dataset.

performance obtained by merging all features together. This contrasts with the
original study, where the combination of features did not add value. This is per-
haps the most surprising outcome of the replicability experiments, and the only
plausible explanation we can derive is that this results from the setup differences
between our experiments and the originals, as described in the previous sections.

6 Generalisation

To build on Sondhi et al.’s work and to determine the generalisability of their
findings, we apply new standardisation techniques to the Sondhi et al. dataset
and also test the methods with two further datasets.

6.1 Standardisation

The original paper authors did not report on how the standardisation of the
features (to get 0 mean and 1 standard deviation) - commonly applied in machine
learning [30] - could affect the algorithm performance. As such, we tested and
report the results here (see Table 4).

As can be seen, the performance of all feature sets increases in comparison
with results reported in Table 3. Of particular note, the models with word-based
representation are most improved. By carrying out this procedure, in addition
to the Z1 normalisation per document previously described, we are favouring
features or words that have a low average, that is, less-common or technical
words (see Figure 1). This evens out the differences between terms, and what
really guides the classifier, is whether a feature of them deviates from its average
in a particular document. For example, a word that is broadly used. This also
explains why the best feature combination is word-based with stopwords being
used.

6.2 New test datasets

The Web Search dataset by Schwarz et al. [3] and the CLEF eHealth consumer
health search task 2018 [2] were used to further evaluate this classification tech-
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Weighted Accuracy (%)
Features λ = 1 λ = 2 λ = 3

Links 74.4 78.1 76.4
Links + Commercial 73.3 76.5 79.9

Words (removing stopwords) 97.2 98.3 98.5
Words (keeping stopwords) 98.1 98.3 98.9
All (removing stopwords) 97.2 98.3 98.5
All (keeping stopwords) 97.8 98.3 98.9

Table 4. Our results for Sondhi et al. dataset (with standard scaler).

Fig. 1. Document-term matrix standardisation.

nology. Both contain health-related content, but the first additionally addresses
topics such as finance, politics, environment, and news about famous people.

Schwarz et al. focused on credibility assessment to help people searching
for information online. The CLEF eHealth task addresses a similar problem,
but it is tighter to health-related online data. It must be noticed that these
documents were not labelled in terms of reliability, but the notions of credibility
and trustworthiness were used instead. However, we considered these concepts
as proxies of reliability and attempted to see how generalisable the previous
conclusions were against other datasets.

Schwarz et al. chose 1000 webpages related to multiple topics to be labelled
in terms of credibility. They proposed a five-point Likert scale, from 1 to 5, to
generate the ground-truth, and one of the authors of the paper rated the whole
collection.

On the other hand, the CLEF eHealth consumer health search task dataset
was created from webpages recovered from CommonCrawl12. The organizers of
the task defined an initial list of potentially interesting sites and then, they
submitted queries against a search engine to retrieve the final URLs. The initial
list was extended by manually adding some reliable sites and other known to be
unreliable. Finally, the corpus was divided into folders by domain.

In this CLEF task, it was decided to implement the RBP-based method
proposed by Moffat et al. [31] to generate the assessment pool, instead of using
a fixed-depth pooling strategy. After the pool was formed, human assessors from

12 http://commoncrawl.org

http://commoncrawl.org
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Schwarz et al. CLEF eHEALTH

# Reliable 75 9,879
% Reliable 93.75% 73.25%

# Unreliable 5 3,607
% Unreliable 6.25% 26.75%

Table 5. Class distribution in the different datasets.

Amazon Mechanical Turk, with certain profiles, were selected. In the case of
trustworthiness judgments, an eleven point scale, from 0 to 10, was used.

It was necessary to relabel both datasets into a binary-class scale to fit with
our 2-class technology. We removed the middle values (3 for Schwarz et al. and
from 4 to 6 for CLEF) and mapped the extreme values to reliable and unreliable,
respectively.

The main statistics of these datasets after performing this relabelling process
are shown in Table 5. In both cases, we face an imbalanced data problem. This
is particularly acute in the case of the Schwarz et al. data.

Imbalanced learning is a common problem and there are multiple techniques
to deal with the issue. In this case, we considered and compared two different
approaches: introducing a cost-factor that applies a higher penalty to errors in
the minority class and resampling techniques that try to balance the data by
adding artificial instances or by removing some majority examples [32,33,34,35].
In this paper, only cost-factor techniques are reported since our preliminary
experiments suggested that cost-factor methods outpeform resampling methods
in both datasets.

On the other hand, in imbalanced learning, it is common to use metrics,
such as the F1 measure. Here, we report the micro-averaged F1, biased by
the frequency of each class, and the value of F1 for each class. At the time of
selecting the best feature combination for each collection, we gave priority to the
minority class or unreliable F1.

Finally, it is worth noting that for both datasets the standardisation method
described in 6.1 was applied.

6.2.1 Schwarz et al. results

Due to the small dataset size, a stratified 2-fold cross validation was used
(instead of 5-folds). The obtained results are shown in Table 6. We note that in
case of a tie, we always select the simplest feature set.

With cost factor set to 1, link-based features perform the best, but the clas-
sifier does not detect a single unreliable document. With this learning strategy,
no combination is capable of correctly cataloguing examples from the minor-
ity class. This is not surprising given the low percentage of negative examples
(6.25%).



10 Fernández-Pichel et al.

Weighted Accuracy (%)

Features
SVM
cost

factor
F1

F1
(reliable
class)

F1
(non
reli-
able
class)

λ = 1 λ = 2 λ = 3

Links
1 0.94 0.97 0 93.75 - -
2 0.94 0.97 0 - 88.26 -
3 0.94 0.97 0 - - 83.4

Links +
Commercial

1 0.94 0.97 0 93.75 - -
2 0.94 0.97 0 - 88.26 -
3 0.94 0.97 0 - - 83.4

Words (removing
stopwords)

1 0.93 0.96 0 92.5 - -
2 0.91 0.95 0.25 - 87.01 -
3 0.91 0.95 0.33 - - 85.42

Words (keeping
stopwords)

1 0.91 0.95 0 91.25 - -
2 0.91 0.95 0 - 85.88 -
3 0.91 0.95 0.2 - - 84.54

All
(removing stopwords)

1 0.94 0.97 0 93.75 - -
2 0.91 0.95 0 - 85.88 -
3 0.91 0.95 0 - - 81.13

All
(keeping stopwords)

1 0.93 0.96 0 92.5 - -
2 0.91 0.95 0.25 - 87.02 -
3 0.91 0.95 0.33 - - 85.42

Table 6. Our results for Schwarz et al. dataset.

With cost factor 2, the results were still even, but some feature combina-
tions were able to detect the minority class. This was the case of the word-based
model and for the model combining all features- keeping stopwords. The latter
was selected as the best combination, due to a slight difference in the weighted
accuracy performance.

With cost factor 3, the detection of the minority class is slightly improved.
As for the combination of features, both the word-based and the combination
of all features (maintaining the stopwords) offer the same performance, but the
former was selected because it generates a simpler model.

6.2.2 CLEF eHealth results

This was the largest dataset in our experiments, and it also presents an
imbalance problem between classes. In contrast with Schwarz et al., a stratified
5-fold cross validation could be applied given the larger number of data points.
The obtained results are shown in Table 7.

For all cost factor values, the word-based model that maintains the stopwords
was the one that offered the best results, with also reasonable minority or non-
reliable class detection.

6.3 Generalisation conclusions

Each of the studied datasets was different both in terms of content and task.
Moreover, the original collection was fully balanced, while the others were clearly
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Weighted Accuracy (%)

Features
SVM
cost

factor
F1

F1
(reliable
class)

F1 (non
reliable
class)

λ = 1 λ = 2 λ = 3

Links
1 0.73 0.85 0 73.15 - -
2 0.73 0.85 0 - 57.66 -
3 0.46 0.39 0.28 - - 50.39

Links +
Commercial

1 0.73 0.85 0 73.15 - -
2 0.73 0.84 0 - 57.63 -
3 0.3 0.12 0.41 - - 51.74

Words (removing
stopwords)

1 0.74 0.85 0.14 73.86 - -
2 0.68 0.79 0.38 - 61.57 -
3 0.55 0.63 0.44 - - 58.65

Words (keeping
stopwords)

1 0.75 0.85 0.24 74.63 - -
2 0.69 0.79 0.41 - 62.93 -
3 0.59 0.68 0.45 - - 59.81

All
(removing stopwords)

1 0.74 0.85 0.15 73.88 - -
2 0.68 0.79 0.38 - 61.58 -
3 0.55 0.62 0.44 - - 58.39

All
(keeping stopwords)

1 0.75 0.85 0.24 74.53 - -
2 0.7 0.79 0.4 - 62.89 -
3 0.59 0.67 0.45 - - 59.72

Table 7. Our results for CLEF eHealth dataset.

imbalanced. Nevertheless, some interesting conclusions can be drawn from the
generalisation experiments.

The obtained results reinforce the main insights of the original study. In
all of the experiments the best strategies are the bag-of-words approach or the
one that merges all features set together. The evidence moreover suggests that
keeping stopwords leads to enhanced performance.

7 Future work

This work opens up a line of research that allows us to continue to study in-depth
how unreliable information is transmitted in the Web and how it is perceived by
users. A natural next step would be the application of our predictive technology
to the case of social media [36,37,38], extracting known true and false claims
from the labelled documents and seeing their impact on this media. This kind
of news spreads very quickly in this media, which can help us to identify them
or put them under suspicion.

We also intend to further analyse the effect of combining different features
on performance and, additionally, plan to train new models using BERT [39].
This language modelling approach, which extracts a contextual representation
of words, has been proven to be successful in the field of Natural Language
Processing (NLP).

We will also perform transfer learning experiments among the different datasets
available [40,41]. This can be helpful to understand whether or not training with
one collection and testing with another reinforces the conclusions obtained.
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8 Conclusions

In this work, a replicability study of reliability technology was presented. The
main objective was to re-run the experiments and try to confirm the conclusions
extracted from the original study. Our results reinforce the fact that word-based
models or the ones that combine all available features are the most promising
approaches to distinguish reliable from unreliable sites.

We have also tested this predictive technology against two further and highly
different datasets and the conclusions remain the same. This gives us the con-
fidence to state that the research presented in the original paper establishes a
good reference for reliability detection in online data.

Finally, as a new test of its generalisation, this algorithm has been used by
our team in the TREC 2020 Health Misinformation Track13 to tackle misinfor-
mation about COVID-19 and its treatments. In order to replicate the experi-
ments presented in this work, the code is available for the research community
at Github14.
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