
Feeling Lucky?
Multi-armed Bandits for Ordering Judgements

in Pooling-based Evaluation

David E. Losada
Centro Singular de

Investigación en Tecnoloxías
da Información (CiTIUS)

Universidade de Santiago de
Compostela

david.losada@usc.es

Javier Parapar
Information Retrieval Lab
Department of Computer

Science
University of A Coruña

javierparapar@udc.es

Álvaro Barreiro
Information Retrieval Lab
Department of Computer

Science
University of A Coruña
barreiro@udc.es

ABSTRACT
Evaluation is crucial in Information Retrieval. The Cranfield
paradigm allows reproducible system evaluation by foster-
ing the construction of standard and reusable benchmarks.
Each benchmark or test collection comprises a set of queries,
a collection of documents and a set of relevance judgements.
Relevance judgements are often done by humans and thus
expensive to obtain. Consequently, relevance judgements
are customarily incomplete. Only a subset of the collection,
the pool, is judged for relevance. In TREC-like campaigns,
the pool is formed by the top retrieved documents supplied
by systems participating in a certain evaluation task. With
multiple retrieval systems contributing to the pool, an ex-
ploration/exploitation trade-off arises naturally. Exploiting
effective systems could find more relevant documents, but
exploring weaker systems might also be valuable for the
overall judgement process. In this paper, we cast document
judging as a multi-armed bandit problem. This formal mod-
elling leads to theoretically grounded adjudication strategies
that improve over the state of the art. We show that simple
instantiations of multi-armed bandit models are superior to
all previous adjudication strategies.

CCS Concepts
•Information systems → Evaluation of retrieval res-
ults; •Computing methodologies → Reinforcement
learning;

Keywords
Multi-armed bandits, Pooling, Information Retrieval

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC 2016, April 04-08, 2016, Pisa, Italy
c© 2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851692

1. INTRODUCTION
Relevance judgements are a core component of Inform-

ation Retrieval (IR) evaluation. But relevance judgements
are produced by human assessors and, thus, expensive to ob-
tain. This is why most experimental test collections are built
through a process called pooling. In pooled test collections
only a subset –or pool– of the entire document collection is
judged for each topic [4]. Having enough relevant documents
in the pool we can safely assume that unjudged documents
are non-relevant, leading to a set of judgements –or qrels–
that are sufficiently complete and unbiased. In this way, we
can build test collections at an affordable cost.

Evaluation campaigns like TREC, CLEF or INEX follow
a common approach: i) given a set of documents and a set
of topics, the campaign’s organisers define a search task, ii)
different participants submit their system’s results, iii) for
each topic, the pool of documents to be judged is construc-
ted by taking the union of the top k –being k typically 100–
documents retrieved by the participating systems. With ap-
propriate controls on pool depth (k), as well as on the vari-
ety of pooled retrieval systems (also known as pooled runs)
the resulting benchmark can be reused to fairly compare
retrieval algorithms [20].

With a given budget for doing assessments, the more rel-
evant documents we find, the more reliable the evaluation
will be [16]. Thus, the most productive use of assessor time
is spent on judging relevant documents. A number of studies
in the literature [6, 12, 5] have focused on how to adjudic-
ate pooled documents for judgement. Effective adjudication
methods employ different strategies to give priority to doc-
uments that are potentially relevant. These adjudication
methods, when compared with random or arbitrary adju-
dication, can significantly reduce the number of judgements
required to obtain a qrel file with sufficient volume of relev-
ant documents [12].

Nonetheless, research on document adjudication has con-
centrated on adhoc or heuristic methods to prioritise judge-
ments. We argue that document adjudication can be nat-
urally cast as a reinforcement learning problem and we pro-
pose solutions based on multi-armed bandit algorithms. The
judging process can be seen as a learning from interaction
environment. As judgements come in, we learn which runs
yield the most relevant documents. The multi-armed (or
n-armed) bandit problem [15] is a traditional reinforcement

http://dx.doi.org/10.1145/2851613.2851692

learning problem that has been studied for decades. It offers
a theoretical framework for analysing the tradeoff between
exploration and exploitation. When an automated agent in-
teracts with an uncertain environment, the agent can opt
for exploiting its current and reliable knowledge or, altern-
atively, it can choose to explore the environment. Exploita-
tion is the right thing to do to maximize the expected reward
on the next action, but exploration may produce the greater
total reward in the long run. This dilemma arises frequently
in practice in a wide range of areas, including clinical trials,
online advertisement, ecology, finance and psychology. It
also arises in document adjudication for IR evaluation: fo-
cusing only on effective runs implies a risk of missing relevant
documents retrieved by other apparently inferior runs.

The contributions of this paper are:

• We model document adjudication in pooling-based eval-
uation as a multi-armed bandit problem. Our bandit-
based methods are able to early identify relevant docu-
ments in the pools. This modelling is a natural, innov-
ative and valuable contribution. Linking IR pooling
to reinforcement learning permits to apply the lessons
learned over the years in this active area of research.

• We conduct a thorough comparison of past adjudica-
tion strategies. Our experiments reveal that all soph-
isticated adjudication strategies are inferior to an early
method, MoveToFront [6], which scans the rankings in
a simple way.

• We analyse the exploration/exploitation dilemma in
the context of document adjudication and show how
the most effective methods behave with respect to this
dilemma.

• We show that some simple bandit-based solutions are
superior to all previous adjudication strategies, includ-
ing MoveToFront.

2. BANDIT METHODS
The multi-armed bandit problem [15] is defined as fol-

lows. You are faced repeatedly with a choice among n slot
machines. Each machine –or bandit– has an unknown prob-
ability of distributing a prize. After each play, you receive
a numerical reward that depends on the bandit you selec-
ted. The objective is to maximize the expected total reward
over some time period. Through repeated plays, you try to
maximize your winnings by concentrating your plays on the
best machines. But, if you have found a bandit that gives
good results: do you keep drawing from it to maintain your
good score, or do you try other bandits in hopes of find-
ing a better one? This is the classical exploration versus
exploitation dilemma. Whether it is preferable to explore
or exploit depends on several factors, such as the uncer-
tainty of the current estimates or the number of remaining
plays. Although the optimal solution to this problem is dif-
ficult, there are many balancing methods that implement
approximately-optimal solutions that scale well.

Existing solutions for the multi-armed bandit problem can
be applied for adjudicating judgements in pooling-based IR
evaluation. Given a query and a set of runs –rankings of
documents in decreasing order of estimated relevance–, we
are often interested in finding as many relevant documents
as possible for the same amount of assessor effort. Initially,
we know nothing about the relative quality of the runs. As

we extract documents from the runs, we gain evidence on the
quality of the runs and the judging process can be oriented
towards the most effective runs. At any given point, we can
opt for exploring runs that currently look suboptimal. These
inferior runs can eventually become good suppliers of relev-
ant items. Playing a machine means selecting a run and ex-
amining the next document supplied by the run. Every run
supplies documents according to their ranks (i.e. the top 1
document is the first document supplied, and so forth). The
document is judged and the outcome of the play is the relev-
ance degree of the document. Documents that were already
judged (another run had already supplied the same docu-
ment) are simply skipped. In our experiments, the judge-
ments are obtained from the official relevance judgements of
the TREC adhoc track, which contains assessments for all
pooled documents. As usual in most TREC evaluations, we
consider binary relevance and, therefore, we constrain our
analysis to bandits with binary rewards.

2.1 Allocation strategies
In the context of the multi-armed bandit problem, a policy,

or allocation strategy, is an algorithm that chooses the next
machine to play based on past plays and obtained rewards.
Each allocation strategy captures distinct ideas on how to
handle the exploration/exploitation tradeoff. Regret is the
expected loss due to the fact that the policy does not always
play the best machine. The following paragraphs explain the
main features of well-known allocation methods.

2.1.1 Random
This is a naive allocation strategy that randomly chooses

the next machine to play. It is commonly used as a baseline
for comparison.

2.1.2 εn-greedy
A greedy approach consists of always playing the ban-

dit with the highest average reward1. This method maxim-
izes immediate rewards and spends no time at all sampling
apparently inferior actions. The greedy method performs
worse in the long run because it often gets stuck perform-
ing suboptimal actions. A simple alternative is to behave
greedily most of the time and every once in a while select
an action at random. A simple algorithm that implements
this idea is ε-greedy [18]. At each round, ε-greedy prescribes
to play with probability 1− ε the machine with the highest
average reward, and with probability ε a randomly chosen
machine. ε-greedy eventually performs better than a purely
greedy approach because ε-greedy continues to explore, im-
proving its chances of recognising optimal actions.

Rather than having a constant exploration probability, it
is usually good to make that ε decreases as our estimates
become more accurate. To meet this aim, εn-greedy methods
let ε go to zero with a certain rate:

εn = min(1,
c ·K
d2 · n), n = 1, 2, . . . (1)

where n is the round number, c > 0 is a parameter, K is
the number of machines, and d is usually set to the difference
(in expected reward) between the best choice and the second
best2.

1Initially, all averages are set to 0.5.
2We set d to 0.1 and c to 0.01. In our initial tests we found

2.1.3 Upper Confidence Bound (UCB)
UCB policies work by associating a quantity called upper

confidence index to each machine. Among all machines, the
leader at round n is the machine with the largest empirical
mean of obtained rewards. While we would like to sample
from this apparently superior machine, we need to make sure
that the other machines have been sampled enough for us to
be reasonably confident that they are indeed inferior. One
way of doing this is to compare certain upper confidence
bounds for the mean of an apparently inferior population
with the estimated mean of the leader. The index of UCB1
policy [3] is the sum of two terms: the current average re-
ward and a term related to the size of the one-sided confid-
ence interval for the average reward. UCB1-Tuned [3] is an
evolution over UCB1 that takes into account the variance of
each machine. UCB1-Tuned often performs better in prac-
tice [3]. We implemented both algorithms and also found
that UCB1-Tuned is more effective than UCB1. We there-
fore constrain our discussion to the UCB1-Tuned algorithm:

Algorithm 1 UCB1-Tuned algorithm

Play each machine once;
Loop

Play machine j that maximises...

µj +

√
lnn
nj
·min(1/4, σ2

j +
√

2 lnn
nj

)

where µj and σ2
j are the sample mean and variance of the

rewards obtained from machine j so far, nj is the number
of times machine j has been played, and n is the overall
number of plays.

The quantity added to the sample average is steadily re-
duced as the bandit is played, and uncertainty about the
reward probability is reduced. As a result, by always select-
ing the machine with the highest optimistic reward estimate,
UCB1-Tuned gradually shifts from exploration to exploita-
tion.

2.1.4 Bayesian Bandits
The methods described above take a frequentist approach,

where expected mean rewards are considered as unknown
deterministic quantities and the goal of the algorithm is
to achieve the best parameter-dependent performance. In
contrast, Bayesian approaches do quantitative weighting of
evidence supporting alternative hypotheses.

Each machine is characterized by a parameter which is
endowed with a prior distribution. This parameter encodes
the probability of winning (probability of supplying a rel-
evant document in our case). The Bayesian process begins
by assuming complete ignorance of these probabilities and,
therefore, applying a uniform prior, U(0, 1), for each ma-
chine. From these distributions we select our next machine
(more on this below) and observe the result of playing the
machine. With binary rewards, the result is Bernoulli or,
equivalently, Binomial with a single trial. This binary out-
come is used to revise our belief about the probability of
winning of the machine. Observe that the initial priors are
Beta(1, 1) –Beta handles the uniform distribution as a par-
ticular case– and Beta is the conjugate prior distribution
for Binomial. Given a prior distribution Beta(α, β) and a

that performance was insensitive to d and moderately sens-
itive to c (all c ∈ (0, 0.1] produced equivalent results).

binary outcome O, the posterior distribution is also Beta:
Beta(α + O, β + 1 − O). Bayesian inference is therefore a
natural framework where we can formally handle our uncer-
tainty about the probabilities of winning.

Bayesian Learning Automaton (BLA) [8] (Algorithm 2)
follows this avenue and employs random sampling from the
posterior distributions to select the next machine to play.
BLA is parameter-free and, usually, performs significantly
better than UCB or εn-greedy [8]. Besides BLA, we also
implemented another Bayesian solution where the next ma-
chine is selected by taking the maximum expectation of the
posterior distributions. This exploitation method will be re-
ferred to as MM (MaxMean)3: next machine← arg max

m

αm/(αm + βm).

Algorithm 2 Bayesian Learning Automaton

foreach m ∈machines do
αm ←1, βm ←1;

Loop
foreach m ∈machines do

Draw a sample xm from Beta(αm, βm);

next machine← arg max
m

xm ;

Play next machine and get Onext machine ;
αnext machine ← αnext machine +Onext machine ;
βnext machine ← βnext machine + 1−Onext machine ;

In our pooling setting, we can make further use of the
binary outcomes. Rather than simply updating the played
machine’s distribution (i.e. the run that supplied the last
document judged), we have opted for updating the Beta
distributions of all runs that retrieved the same document.
In this way, evidence about relevance early flows to other
runs4.

3. EXPERIMENTS
The experiments reported here are fully reproducible. Our

implementations –R scripts– of all pooling algorithms are
publicly available5.

Table 1 presents the main statistics of the four TREC
collections (ad-hoc retrieval task) that we used for exper-
imentation. In TREC, it is common to include runs pro-
duced by humans (manual runs) in the pool. This type of
runs, where humans can reformulate queries and use mul-
tiple queries, contribute many unique relevant documents
to the pool. Combining automatic runs and manual runs
is an effective strategy to build robust test collections that
do not have a bias towards the systems contributing to the
pool. For each collection, we considered all runs that con-
tributed to the pool and ran the document judging process
on a query-by-query basis.

3.1 Pooling Baselines
First, we evaluated several document selection strategies

that have been proposed in the past:

3The expectation of a distribution Beta(α, β) is α/(α+ β).
4With MM , this reward distribution policy often leads to
several machines having the maximum mean. Ties are re-
solved by selecting the played machine.
5http://tec.citius.usc.es/ir/code/pooling bandits.html

http://tec.citius.usc.es/ir/code/pooling_bandits.html

TREC5 TREC6 TREC7 TREC8
queries 50 50 50 50
automatic runs 77 31 77 71
manual runs 24 15 7 0
assessed docs 133681 72270 80345 86830
avg. # docs judged
per query 2673.6 1445.4 1606.9 1736.6
% of rel docs
in the pool 4.1% 6.4% 5.8% 5.4%
avg. # rels
per query 110.48 92.22 93.48 94.56

Table 1: Main statistics of the collections and pooled runs

0
20

40
60

80

TREC8

judgments

re
ls

 fo
un

d
(a

vg
)

100 1000 2000 3000

DocID
Rank
MTF

A
B
C

Figure 1: Comparison of baseline methods for ordering
judgements: DocID, Rank, MoveToFront (MTF), and Mof-
fat et al.’s [12] methods A, B and C. The plots show the num-
ber of relevant documents found (averaged over all queries)
against the number of judgements.

DocID: The standard evaluation sequence followed by
TREC assessors [19]. Each pool is simply sorted by docu-
ment identifier.

Rank: Documents are selected in decreasing order of
rank. First, all top 1 documents are judged: second, all
top 2 documents are judged, and so forth.

MoveToFront (MTF) [6]: under MTF, the runs are
prioritised (initial priorities are uniform) and the top-ranked
document from the run with the top priority is judged. If it
is relevant then documents from the same run continue to
be examined until a non-relevant document is found. When
a non-relevant document is found the priority of the current
run is reduced and the judgement process jumps to another
maximum priority run.

Moffat and colleagues [12] proposed several methods for
ordering judgements. All of them require rank-biased pre-
cision (RBP). RBP [13] permits to weight the utility of a
document obtained from a ranking based on the likelihood
that users reach the document’s rank. The underlying RBP
model assumes that users examine documents in order and
have a likelihood of 50% or so of reaching the 4th-ranked
document. RBP approximates user behaviour as follows: i)
the first document is always examined, ii) the user proceeds
from each document to the next with probability p, or ter-
minates her search with probability 1−p. The overall utility
of a ranking is estimated as:

RBP = (1− p) ·
∑
i=1

ui · pi−1 (2)

where ui ∈ [0, 1] is the relevance of document at rank i.
The average number of documents examined is 1/(1 − p).
It is common practice to set p to 0.8, leading to an average
number of documents examined of 5, which is a reasonable
approximation of actual user behaviour. This measure has
been used for comparing ranking algorithms. With binary
relevance and p = 0.8, a relevant document in the top 1 po-
sition adds 0.2 to the overall ranking score, a relevant doc-
ument in the top 2 position adds 0.16, and so forth. In [12],

these contributions were used for prioritising documents to
be judged. The following methods were proposed:

Moffat et al.’s Method (A) [12], “Summing contribu-
tions”: Given a document d and a set of runs S, the docu-
ment is weighted as:

wd =
∑
s∈S

cs,d (3)

cs,d = (1− p) · prd,s−1 (4)

where cs,d (which depends on d’s rank, rd,s), is the potential
contribution of d to the RBP score of s (if d is relevant it
would add cs,d to the RBP of s)6.

This approach promotes documents that are highly ranked
by many runs. The weight wd is computed for all pooled
documents and documents are judged in decreasing order
of wd. Observe that this is a static judgement ordering:
document positions are used for prioritising judgements but
it ignores the outcome of those judgements.

Moffat et al.’s Method (B) [12], “Weighting by resid-
ual”: this is a variant that gives more weight to documents
coming from runs whose residual RBP is large. At any given
point in the judgement process, the base RBP is the RBP
score that a run has achieved so far (computed from the
documents that have been judged); while the residual RBP
is the maximum increment in the RBP score that the run
can get (if all unjudged documents that were retrieved by
the run were relevant). Going to deeper judgements reduces
the residual. Method B reinforces runs with large residuals,
which avoids having runs with many unjudged documents.
Given a document d and a set of runs S, the document
weight, which is used for adjudicating judgements, is:

wd =
∑
s∈S

cs,d · ress (5)

where ress is the residual of the run. Again, the method is
static because the outcome of the judgements is ignored.

Moffat et al.’s Method (C) [12], “Weighting by pre-
dicted score”: this method goes further and favours effective
runs as follows:

wd =
∑
s∈S

cs,d · ress · (bases + ress/2)3 (6)

where bases is the base RBP obtained by the run so far. The
range of the final RBP is [bases, bases +ress] and Method C
takes the range’s midpoint, bases + ress/2, as an estimation
of the retrieval effectiveness of the run. In [12], this estim-
ation was raised to the power of 3 to boost the strength of
the effectiveness component. Method C is dynamic because
the outcome of the judgements directly affects the value of
the base RBPs of the runs.

We experimented with these six baseline strategies. The
evolution of relevant documents found at varying judgement
levels is depicted in Figure 17. MTF is a clear winner. It
is consistently superior to all other allocation methods. Not
surprisingly, judging documents in order of DocID is the
worst performing method. Our results also confirm the rel-
ative merits of methods A, B, C found by Moffat et al. [12]:
C is superior to A and B. However, Moffat et al. did not
compare the methods A/B/C against MTF. According to
our experiments, MTF is clearly better than Moffat et al.’s

6If d is not retrieved by s then rd,s = ∞ and, therefore,
cs,d = 0.
7Due to space constraints, we only report TREC8 data but
trends were consistent across all collections.

Number of judgements
Method 100 300 500 700 900 1100 2000 all

TREC5
MTF 27.66 49.5 63.54 72.04 78.64 84.58 99.58 109.9
BLA 23.46 45.1 59.36 69.82 77.34 82.7 97.58 109.9
MM 27.76 53.54 68.18 77.96 84.18 88.74 101.42 109.9
RANDOM 20.94 41.48 53.38 63.42 71.28 76.36 93.92 109.9
UCB 20.82 46.42 58.56 67.5 74.44 79.8 96.4 109.9
εn-GREEDY 21.1 46.7 59.96 69.48 76.82 82.26 96.88 109.9

TREC6
MTF 31.96 55.7 66.68 75.82 82.04 86.28 91.8
BLA 24.94 46.42 60.62 70.4 78.84 84.56 91.8
MM 32.12 56.1 68.98 78.06 83.16 87.24 91.8
RANDOM 25.56 46.9 59.98 69.7 77.4 83.82 91.8
UCB 27.86 48.96 62.36 71.38 79.14 84.9 91.8
εn-GREEDY 27.6 50.8 63.12 71.84 78.8 84.44 91.8

TREC7
MTF 35 58.04 70.58 78.52 83.48 86.94 92.7 92.84
BLA 27.64 49.8 62.3 71.42 78.3 83.16 91.58 92.84
MM 34.62 56.4 70 78.18 83 86.36 92.4 92.84
RANDOM 27.48 50.74 62.86 71.86 78.44 83.44 91.3 92.84
UCB 30.32 52.4 64.44 72.44 79.32 83.68 91.06 92.84
εn-GREEDY 28 53.8 65.06 73.54 79.22 83.02 91.2 92.84

TREC8
MTF 34.06 58.48 71.78 79.22 84.5 87.58 93.22 94.04
BLA 27.14 50.42 64.9 73.96 80.36 84.96 93.36 94.04
MM 34.4 59.34 72.9 80.82 85.56 88.8 93.54 94.04
RANDOM 26.94 50.58 63.9 72.58 79.28 83.48 92.58 94.04
UCB 29.86 52.9 65.92 74.06 80.52 85.12 93.4 94.04
εn-GREEDY 28.16 53.66 66.76 74.88 80.6 84.88 93.2 94.04

Table 2: Bandit Allocation Strategies and Move To Front (MTF) for ordering judgements. Average number of relevant
documents found at different number of judgements performed. For each judgement level and collection, the highest average
of relevant documents found is bolded.

methods and better than any other pooling baseline strategy.
We therefore set MTF as our reference pooling strategy.

3.2 Bandit models
Given a query and a set of runs, each run can be seen

as a machine or bandit that we can play to extract a docu-
ment to be judged. Playing a machine means here getting
the next ranked document from a given run (starting from
rank #1). Documents that were already judged from other
run are simply skipped. The binary reward is here the bin-
ary relevance of the document with respect to the query.
This can be obtained from the official qrel file, which con-
tains judgements for all pooled documents. This sequential
process simulates an iterative selection of runs, where we
increasingly gain evidence about the relative merits of the
runs.

Table 2 reports the number of relevant documents identi-
fied by each bandit allocation strategy described in section 2
and by MTF. At the end of the process, all strategies identify
the same number of relevant documents (all pooled docu-
ments judged). However, some strategies are much quicker
than others at identifying relevant documents. Early identi-
fying relevant documents permits to reduce the judgement
effort (we can just stop the judgement process when a suffi-
cient number of relevant documents are found). The follow-
ing conclusions can be drawn from these initial experiments:

• Not surprisingly, randomly selecting the next run to
play is the worst performing allocation strategy. This
naive method ignores how many relevant documents
are found by each run and, therefore, it slowly finds
relevant documents. Anyway, the counts of relevant
documents found by random selection are not dispro-
portionately low. This is because runs are selected at
random, but documents are not randomly drawn from
the selected run. The order of the document rankings

is preserved and, therefore, the randomly selected run
supplies its next top ranked document. All rankings
are therefore explored starting from the top positions,
which contain many relevant documents.

• Comparing BLA, UCB, and εn-GREEDY, which im-
plement different ways to promote exploration, we ob-
serve that εn-GREEDY looks slightly superior to BLA
and UCB. BLA and UCB are elaborated allocation
strategies that take into account the history of wins
and trials of each run and the uncertainty about the
estimated quality of the runs. The jumps to explore
other runs are influenced by the confidence intervals of
the reward means (UCB) or by how sharp the posterior
distributions are (BLA). In contrast, εn-GREEDY is a
simpler allocation strategy: when it decides to explore,
it jumps randomly to another run. Although the dif-
ferences in average counts of relevant documents are
small, these results seem to suggest that sophisticated
exploration is not needed. Observe also that the sup-
ply of relevant items by the runs varies as we go down
in the document rankings. In this respect, random ex-
ploration gives equal opportunities to runs regardless
of the history. This randomness prevents focusing the
judgement process too much on runs that were initially
good but which are now exhausted.

• MM and MTF are the best performing adjudication
methods. In TREC7, MTF is slightly superior to MM,
but MM outperforms MTF in the other three collec-
tions. This empirical evidence suggests that MM is at
least as effective as the best model in the literature.
Furthermore, there is room for formally incorporating
MTF-like behaviour into the Bayesian bandit models.
MTF remains at the current run until a non-relevant
document is found. Examining rankings in this way

entails a peculiar notion of history: only the last ex-
traction counts. As we argue in the next subsection,
this behaviour can be incorporated into the Bayesian
allocation models, leading to improved bandit-based
models.

3.3 Improved bandit models
With MTF, the last document examined is the only one

affecting the next move. All previous documents extracted
from the run are simply ignored. If the last document is
relevant we remain in the same run. Otherwise, we jump to
another run (based on the priorities of the runs). Forgetting
quickly about previous rewards can be also incorporated into
the Bayesian bandits models, as we explain next.

In stationary environments, the unknown probability of
distributing a prize of the bandits does not change, and
all rewards –recent or old– should be treated equally. This
treatment often encounters problems where bandits change
over time. In such cases, there are non-stationary solu-
tions, e.g. based on weighting recent rewards more heav-
ily than long-past ones [18]. Our judgement ordering prob-
lem is clearly non-stationary because the quality of the runs
changes as we move down in the rankings. For instance, we
cannot expect a good run constantly supplying 75% relev-
ant documents all the way down. As we proceed examining
documents, the probabilities of relevance of the runs change,
and so do the relative merits of different runs. A run that
was initially strong might be weak at lower rank positions
when compared to the competing runs.

Stationary approaches for bandit problems run the risk
of concentrating too much on runs with old wins, leading
to suboptimal solutions. One popular way of tracking non-
stationary problems is to use a parameter that makes that
the accumulated rewards are computed as a weighted aver-
age of the past rewards and the last reward. This can be
naturally incorporated into the Bayesian models BLA and
MM. At any given point, the parameters of the posterior
distribution of a given run s are:

α = 1 + jrels (7)

β = 1 + jrets − jrels (8)

where jrels is the number of judged documents that are rel-
evant and were retrieved by s, and jrets is the number of
judged documents that were retrieved by s. Updating jrels
and jrets can be governed by a rate parameter that motiv-
ates the method to learn changing environments [7]. Given
the binary relevance of the last document judged, reld, the
parameters of the runs retrieving this document are updated
as:

jrels ← rate · jrels + reld (9)

jrets ← rate · jrets + 1 (10)

If rate = 1 this is the standard method, where all re-
wards count the same. If rate > 1 the method gives more
weight to early relevant documents. Conversely, if rate < 1
the method gives more weight to the last relevant document
found. We tested different values of rate and found that
rate = 0 was the best performing setting. This resembles
MTF, where only the last trial counts. Updating the para-
meters of the posterior distributions in this way leads to
new Bayesian methods. We refer to these non-stationary
Bayesian solutions (rate = 0) as BLA-NS and MM-NS.
BLA-NS is the method that, once the distributions are up-
dated, selects the next run by sampling from the posterior

distribution. MM-NS is the method that simply selects the
posterior distribution having the largest mean. Observe that
setting rate to 0 preserves the formality of the model: the
evidence is still Bernoulli and the prior/posterior are still
Beta. The effect of rate = 0 can be seen as a re-initialisation
of the machine’s counts right prior to playing the machine.

The comparison of these two alternatives against MTF,
MM and BLA is reported in Table 3. In nearly all cases,
MM-NS is the best performing approach. Although both
MTF and MM-NS ignore previous rewards, they entail dif-
ferent models of exploration. When a relevant document is
found both methods behave the same: they remain extract-
ing documents from the same run. The main difference lies
in the movement after finding a non-relevant document. In
such a case, MTF takes into account the priorities of the
runs. In practice, this makes that all runs are visited once
before we re-visit any run; similarly, we only visit a run for
the third time when all other runs have been visited twice,
and so forth. With MM-NS, a non-relevant document makes
that all runs retrieving it get α = 1 and β = 2 and, there-
fore, the mean of their posterior distributions goes to 1/3.
The means of the rest of the runs will be 1/3 (last update
of the run was to account for a non-relevant document), 2/3
(last update of the run was to account for a relevant doc-
ument), or 1/2 (still not judged documents for this run).
Therefore, we tend to move towards runs whose last update
was positive. This seems to be an advantage of MM-NS over
MTF.

4. DISCUSSION
An exploration/exploitation dilemma arises in document

adjudication for judging pooled documents. Exploiting cur-
rent knowledge –selecting the run having the highest aver-
age reward– is more effective than alternative solutions such
as UCB or εn-GREEDY, which incorporate some sort of
exploration. Initially, UCB and εn-GREEDY tend to ex-
plore more. As we gain knowledge on the quality of the
machines, UCB and εn-GREEDY increasingly reduce ex-
ploration. This behaviour does not fit well with our ranking
scanning process. As matter of fact, MTF, the best per-
forming approach in the literature, only moves away from a
run when it supplies a non-relevant item. Since the quality
of the runs tends to fall as we move down in the rankings,
MTF tends to increase exploration at later stages. This type
of scanning seems to be beneficial. We have also shown that
MM, which is an exploitative-only strategy, is competitive
with respect to MTF. Taken together, these results suggest:
either do not explore at all or, if you want to explore, do it
later.

Another interesting insight comes from our non-stationary
variants. MM might be slow at reacting to falls in the qual-
ity of the rankings. For instance, consider a run that initially
supplies five relevant documents and has no more relevant
documents. MM would remain in this run until rank #10
(when the mean of this run goes again to 0.5). Our results
suggest that we should prefer a stringent notion of exploit-
ation, which is not based on the average supply of relevant
documents but just on the last document examined (MM-
NS). The models that follow this approach are capable of
early finding more relevant documents when compared to
MM.

MM-NS is a simple but formal model. Its definition comes
from adopting non-stationary bandit techniques and apply-

Number of judgements
Method 100 300 500 700 900 1100 2000 all

TREC5
MTF 27.66 49.5 63.54 72.04 78.64 84.58 99.58 109.9
BLA 23.46 45.1 59.36 69.82 77.34 82.7 97.58 109.9
BLA-NS 22.8 44.8 58.74 68.78 76.04 81.44 97.4 109.9
MM 27.76 53.54 68.18 77.96 84.18 88.74 101.42 109.9
MM-NS 30 56.76 70.96 79.06 85.18 89.42 101.32 109.9

TREC6
MTF 31.96 55.7 66.68 75.82 82.04 86.28 91.8
BLA 24.94 46.42 60.62 70.4 78.84 84.56 91.8
BLA-NS 25.58 46.68 60.44 70 76.7 83.16 91.8
MM 32.12 56.1 68.98 78.06 83.16 87.24 91.8
MM-NS 33.5 58.2 69.72 77.9 83.48 87.44 91.8

TREC7
MTF 35 58.04 70.58 78.52 83.48 86.94 92.7 92.84
BLA 27.64 49.8 62.3 71.42 78.3 83.16 91.58 92.84
BLA-NS 27.8 50.14 62.54 70.34 76.92 81.56 90.28 92.84
MM 34.62 56.4 70 78.18 83 86.36 92.4 92.84
MM-NS 36.8 62.42 74.42 81.74 85.82 88.32 92.58 92.84

TREC8
MTF 34.06 58.48 71.78 79.22 84.5 87.58 93.22 94.04
BLA 27.14 50.42 64.9 73.96 80.36 84.96 93.36 94.04
BLA-NS 27.12 49.5 63.68 72.06 77.56 82.54 92.42 94.04
MM 34.4 59.34 72.9 80.82 85.56 88.8 93.54 94.04
MM-NS 36.96 64.62 77.3 82.5 86.34 89.2 93.6 94.04

Table 3: MoveToFront (MTF), Stationary Bayesian Allocation strategies (BLA and MM), and Non-Stationary Bayesian
Allocation strategies (BLA-NS and MM-NS). Average number of relevant documents found at different number of judgements
performed. For each judgement level and collection, the highest average of relevant documents found is bolded.

ing them to replicate the strictness of MTF after extracting
a non-relevant document. Furthermore, the superiority of
MM-NS over MTF suggests that our propagation of evid-
ence is more effective than MTF’s system based on priorit-
ies. MTF’s jumps are merely based on the number of times
we have visited each run. MM-NS, instead, jumps to runs
whose last update was for accounting for a relevant docu-
ment. The empirical effectiveness of MM-NS indicates that
our propagation of evidence works very well in practice.

Our comparison of existing pooling algorithms has also
demonstrated that sophisticated methods, which compute
document weights by aggregating evidence from all rankings,
are not optimal at early finding relevant documents.

5. RELATED WORK
Pooling is fundamental in IR evaluation and, thus, has

attracted much attention since its inception [19, 6, 5, 4,
10]. A number of studies have concentrated on efficient ways
to scan pools, with the objective of extracting a sufficient
number of relevant documents as quickly as possible. Move
To Front [6] and Moffat et al.’s methods [12] are the most
prominent algorithms in this area and we have thoroughly
experimented with them. Our multi-armed bandit approach
addresses document adjudication in a more formal way and
leads to effective solutions that are very competitive with
respect to the state of the art.

Multi-armed bandit algorithms have been recently em-
ployed in other areas of IR. Hofmann et al. [9] proposed
models based on bandits to capture interactions between
users and search engines for improving online learning to
rank. In this context, an exploration/exploitation dilemma
arises naturally: the web search engine has to exploit what
is already known to be a good ranking, but it has also to
explore by trying out variations of the current ranking al-
gorithm. Therefore, two document lists are maintained: one
exploitative (based on the current best ranking) and one
exploratory (based on variations to explore potential im-
provements). The user is presented with a result list that

interleaves documents from both lists, and preferences are
inferred from user interactions (clicks). In a similar vein, Yue
and Joachims [21] presented an online learning framework
based on duelling bandits for comparing retrieval algorithms.
The approach is based on implicit feedback gathered from
users (ordinal judgements) and learns by observing inter-
leaved results. Sloan and Wang [17] argued that the relev-
ance of a document changes over time and proposed a dy-
namic model that learns from user clicks and tries to maxim-
ise the user’s satisfaction by combining multi-armed bandits
and the Portfolio Theory, which promotes diversity. Klein-
berg and colleagues [14] presented a multi-armed bandit al-
gorithm that learns a diverse ranking of results based on
clickthrough data. The goal is to trade between relevance
and diversity. The authors’ approach analyses the click-
ing behaviour of users and attempts to minimise user aban-
donment in interactive experiments. Besides bandit models,
other authors have proposed other ways to optimising the ex-
ploration/exploitation tradeoff. A recent work by Karimza-
dehgan and Zhai [11] employed a machine learning approach
for optimising the overall utility of relevance feedback in
an entire session of user interaction. The tradeoff here is
between presenting search results with the highest immedi-
ate utility to a user and presenting search results with the
best potential for collecting useful feedback information. For
instance, judging documents that all have similar contents
is not so useful for relevance feedback when compared to
judging more diversified documents.

6. CONCLUSIONS AND FUTURE WORK
This paper has shown that multi-armed bandits are a nat-

ural solution for adjudicating documents in pooling-based
evaluation. By linking pooling to duelling bandits, which
is an active area of reinforcement learning, we have been
able to define effective adjudication models with strong the-
oretical grounds. Within this framework, we have formally
analysed how the exploration/exploitation dilemma affects
in pooling and we have designed bandit methods that are

highly competitive at extracting relevant documents.
We have also conducted a thorough evaluation of past

adjudication strategies. These experiments not only gave
novel insights about the relative merits of past strategies,
but also showed that our bandit-based solutions are superior
to state-of-the-art models.

This formal framework opens challenging lines of future
research. We have not adjusted for query-related variabil-
ities. As argued in [12], some queries might require more
judgements than others. In this respect, it might be good to
extend the scope of bandit algorithms and run them glob-
ally. With multiple queries, this would result in different
queries having different number of judgements; and explor-
ation/exploitation algorithms could be employed to trade
among queries. This has the potential of further improving
the counts of relevant documents found. However, this needs
to be done with care because we run the risk of biasing the
evaluation towards certain types of queries [19].

Another intriguing line of future research is hierarchical
bandits, which model some type of structure associated to
the bandits (e.g., high-level bandits on the top of smaller
bandits). This leads to allocation methods where we initially
select a top-level bandit and, next, the chosen bandit makes
an internal selection as to which bandit to pull. Pooled runs
are also structured: every research team often contributes
several runs to the pool. Runs from the same team are
inherently associated and, therefore, it makes sense to apply
hierarchical methods.

In this paper we have not been concerned about when to
stop doing judgements. We have concentrated on comparing
adjudication algorithms with varying number of judgements
done. In the future, it will be interesting to employ exist-
ing methodologies to evaluate subset pooling strategies. For
instance, a stopping criterion can be inferred from studying
Kendall correlation between subset qrels and official qrels,
or by doing a power/bias analysis of the subset qrels [5].

Other possible lines of research include comparing our
models with models of metasearch [1, 2], studying other
types of non-stationary allocation methods, and considering
bandit models whose reward is not binary (e.g., by consid-
ering non-binary relevance, or by estimating the importance
of the judged document for the evaluation).

With Bayesian bandits, the tradeoff between exploration
and exploitation can also be adjusted by reshaping the pos-
terior distributions. This might also be worth exploring
(e.g., to further reduce/augment our uncertainty about the
quality of the runs). The initialisation of the judgement pro-
cess has also room for improvement. For instance, we could
set non-uniform priors –or priorities– for the runs from post-
retrieval query difficulty predictors, or from a score distri-
bution analysis.

Acknowledgments
This work was supported by the“Ministerio de Economı́a y Com-

petitividad” of the Goverment of Spain and FEDER Funds under

the research projects TIN2012-33867 and TIN2015-64282-R.

7. REFERENCES
[1] J. Aslam and M. Montague. Models for metasearch. In

Proc. of the 24th Annual Int. ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’01, pages 276–284, NY, USA, 2001.

[2] J. A. Aslam, V. Pavlu, and R. Savell. A unified model for
metasearch, pooling, and system evaluation. In Proc. of the

12th Int. Conference on Information and Knowledge
Management, pages 484–491. ACM, 2003.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Mach. Learn.,
47(2-3):235–256, May 2002.

[4] C. Buckley, D. Dimmick, I. Soboroff, and E. Voorhees. Bias
and the limits of pooling for large collections. Inf. Retr.,
10(6):491–508, Dec. 2007.

[5] G. V. Cormack and T. R. Lynam. Power and bias of subset
pooling strategies. In Proc. of the 30th Annual Int. Conf.
on Research and Development in Information Retrieval,
pages 837–838, USA, 2007. ACM.

[6] G. V. Cormack, C. R. Palmer, and C. L. A. Clarke.
Efficient construction of large test collections. In Proc. of
the 21st Annual Int. Conf. on Research and Development
in Information Retrieval, pages 282–289, USA, 1998. ACM.

[7] C. Davidson-Pilon. Probabilistic Programming & Bayesian
Methods for Hackers. Addison-Wesley Data & Analytics
Series, 2015.

[8] O.-C. Granmo. A bayesian learning automaton for solving
two-armed bernoulli bandit problems. In Proc. of Seventh
Int. Conference on Machine Learning and Applications,
ICMLA ’08, pages 23–30, Dec 2008.

[9] K. Hofmann, S. Whiteson, and M. de Rijke. Contextual
bandits for information retrieval. In NIPS 2011 Workshop
on Bayesian Optimization, Experimental Design, and
Bandits, Granada, 2011.

[10] G. K. Jayasinghe, W. Webber, M. Sanderson, and J. S.
Culpepper. Extending test collection pools without manual
runs. In Proc. of the 37th Int. ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR
’14, pages 915–918, New York, NY, USA, 2014. ACM.

[11] M. Karimzadehgan and C. Zhai. A learning approach to
optimizing exploration-exploitation tradeoff in relevance
feedback. Inf. Retr., 16(3):307–330, 2013.

[12] A. Moffat, W. Webber, and J. Zobel. Strategic system
comparisons via targeted relevance judgments. In Proc.
30th Annual Int. ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 375–382, NY,
USA, 2007. ACM.

[13] A. Moffat and J. Zobel. Rank-biased precision for
measurement of retrieval effectiveness. ACM Trans. Inf.
Syst., 27(1):2:1–2:27, Dec. 2008.

[14] F. Radlinski, R. Kleinberg, and T. Joachims. Learning
diverse rankings with multi-armed bandits. In Proc. of the
25th Int. Conference on Machine Learning, ICML ’08,
pages 784–791, New York, NY, USA, 2008. ACM.

[15] H. Robbins. Some aspects of the sequential design of
experiments. Bull. Amer. Math. Soc., 58(5):527–535, 1952.

[16] M. Sanderson and J. Zobel. Information retrieval system
evaluation: Effort, sensitivity, and reliability. In Proc. 28th
Annual Int. ACM Conf. on Research and Development in
Information Retrieval, pages 162–169, NY, USA, 2005.

[17] M. Sloan and J. Wang. Dynamical information retrieval
modelling: A portfolio-armed bandit machine approach. In
Proc. of the 21st Int. Conf. Companion on World Wide
Web, pages 603–604, USA, 2012. ACM.

[18] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[19] E. Voorhees. The philosophy of information retrieval
evaluation. In Proc. of 2nd Workshop of the
Cross-Language Evaluation Forum on Evaluation of
Cross-Language Information Retrieval Systems, pages
355–370, Berlin, Heidelberg, 2002.

[20] E. M. Voorhees and D. K. Harman. TREC: Experiment and
Evaluation in Information Retrieval. The MIT Press, 2005.

[21] Y. Yue and T. Joachims. Interactively optimizing
information retrieval systems as a dueling bandits problem.
In Proc. of the 26th Annual Int. Conf. on Machine
Learning, ICML ’09, pages 1201–1208, USA, 2009. ACM.

	Introduction
	Bandit Methods
	Allocation strategies
	Random
	n-greedy
	Upper Confidence Bound (UCB)
	Bayesian Bandits

	Experiments
	Pooling Baselines
	Bandit models
	Improved bandit models

	Discussion
	Related Work
	Conclusions and Future Work
	References

